Author Durant, Adam J
Title On water in volcanic clouds
book jacket
Descript 242 p
Note Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5085
Adviser: William Rose
Thesis (Ph.D.)--Michigan Technological University, 2007
Volcanic clouds and tephra fallout present a hazard to aviation, human and animal health (direct inhalation or ingestion, contamination of water supplies), and infrastructure (building collapse, burial of roads and railways, agriculture, abrasive and chemical effects on machinery). Understanding sedimentation processes is a fundamental component in the prediction of volcanic cloud lifetime and fallout at the ground, essential in the mitigation of these hazards. The majority of classical volcanic ash transport and dispersion models (VATDM) are based solely on fluid dynamics. The non-agreement between VATDM and observed regional-scale tephra deposit characteristics is especially obvious at large distances from the source volcano. In meteorology, the processes of hydrometeor nucleation, growth and collection have been long-established as playing a central role in sedimentation and precipitation. Taking this as motivation, the hypothesis that hydrometeor formation drives sedimentation from volcanic clouds was tested
The research objectives of this dissertation are: (1) To determine the effectiveness of tephra particles in the catalysis of the liquid water to ice phase transformation, with application to ice hydrometeor formation in volcanic clouds. (2) To determine the sedimentological characteristics of distal (100s km) tephra fallout from recent volcanic clouds. (3) To assess particle fallout rates from recent volcanic clouds in the context of observed deposit characteristics. (4) To assess the implications of hydrometeor formation on the enhancement of volcanic sedimentation and the potential for cloud destabilization from volcanic hydrometeor sublimation
Dissertation Overview. The following chapters present the analysis, results and conclusions of heterogeneous ice nucleation experiments and sedimentological characterization of several recent tephra deposits. The dissertation is organized in three chapters, each prepared in journal article format. In Chapter 1, single ash particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. In Chapter 2, the tephra deposit from the 18 May 1980 eruption of Mount St. Helens, USA, was reanalyzed using laser diffraction particle size analysis and hydrometeor-induced sedimentation mechanisms are considered. In Chapter 3, fallout from the 18 August 1992 and 16--17 September 1992 eruptions of Mount Spurr, USA, was analyzed and particle sedimentation and cloud microphysics were modeled to assess the potential for cloud destabilization from hydrometeor sublimation
School code: 0129
DDC
Host Item Dissertation Abstracts International 68-08B
Subject Geology
Atmospheric Sciences
0372
0725
Alt Author Michigan Technological University