LEADER 00000nam a22005173i 4500 
001    EBC470138 
003    MiAaPQ 
005    20200713055138.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2004    xx      o     ||||0 eng d 
020    9780470021170|q(electronic bk.) 
020    |z9780470847411 
035    (MiAaPQ)EBC470138 
035    (Au-PeEL)EBL470138 
035    (CaPaEBR)ebr10113985 
035    (CaONFJC)MIL27521 
035    (OCoLC)57597810 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TK5102.5.P6725 2004 
082 0  621.382 
100 1  Primak, Serguei 
245 10 Stochastic Methods and Their Applications to 
       Communications :|bStochastic Differential Equations 
       Approach 
250    1st ed 
264  1 Hoboken :|bJohn Wiley & Sons, Incorporated,|c2004 
264  4 |c©2005 
300    1 online resource (448 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Stochastic Methods and Their Applications to 
       Communications -- Contents -- 1. Introduction -- 1.1 
       Preface -- 1.2 Digital Communication Systems -- 2. Random 
       Variables and Their Description -- 2.1 Random Variables 
       and Their Description -- 2.1.1 Definitions and Method of 
       Description -- 2.1.1.1 Classification -- 2.1.1.2 
       Cumulative Distribution Function -- 2.1.1.3 Probability 
       Density Function -- 2.1.1.4 The Characteristic Function 
       and the Log-Characteristic Function -- 2.1.1.5 Statistical
       Averages -- 2.1.1.6 Moments -- 2.1.1.7 Central Moments -- 
       2.1.1.8 Other Quantities -- 2.1.1.9 Moment and Cumulant 
       Generating Functions -- 2.1.1.10 Cumulants -- 2.2 
       Orthogonal Expansions of Probability Densities: Edgeworth 
       and Laguerre Series -- 2.2.1 The Edgeworth Series -- 2.2.2
       The Laguerre Series -- 2.2.3 Gram-Charlier Series -- 2.3 
       Transformation of Random Variables -- 2.3.1 Transformation
       of a Given PDF into an Arbitrary PDF -- 2.3.2 PDF of a 
       Harmonic Signal with Random Phase -- 2.4 Random Vectors 
       and Their Description -- 2.4.1 CDF, PDF and the 
       Characteristic Function -- 2.4.2 Conditional PDF -- 2.4.3 
       Numerical Characteristics of a Random Vector -- 2.5 
       Gaussian Random Vectors -- 2.6 Transformation of Random 
       Vectors -- 2.6.1 PDF of a Sum, Difference, Product and 
       Ratio of Two Random Variables -- 2.6.2 Probability Density
       of the Magnitude and the Phase of a Complex Random Vector 
       with Jointly Gaussian Components -- 2.6.2.1 Zero Mean 
       Uncorrelated Gaussian Components of Equal Variance -- 
       2.6.2.2 Case of Uncorrelated Components with Equal 
       Variances and Non-Zero Mean -- 2.6.3 PDF of the Maximum 
       (Minimum) of two Random Variables -- 2.6.4 PDF of the 
       Maximum (Minimum) of n Independent Random Variables -- 2.7
       Additional Properties of Cumulants -- 2.7.1 Moment and 
       Cumulant Brackets -- 2.7.2 Properties of Cumulant Brackets
       -- 2.7.3 More on the Statistical Meaning of Cumulants 
505 8  2.8 Cumulant Equations -- 2.8.1 Non-Linear Transformation 
       of a Random Variable: Cumulant Method -- Appendix: 
       Cumulant Brackets and Their Calculations -- 3. Random 
       Processes -- 3.1 General Remarks -- 3.2 Probability 
       Density Function (PDF) -- 3.3 The Characteristic Functions
       and Cumulative Distribution Function -- 3.4 Moment 
       Functions and Correlation Functions -- 3.5 Stationary and 
       Non-Stationary Processes -- 3.6 Covariance Functions and 
       Their Properties -- 3.7 Correlation Coefficient -- 3.8 
       Cumulant Functions -- 3.9 Ergodicity -- 3.10 Power 
       Spectral Density (PSD) -- 3.11 Mutual PSD -- 3.11.1 PSD of
       a Sum of Two Stationary and Stationary Related Random 
       Processes -- 3.11.2 PSD of a Product of Two Stationary 
       Uncorrelated Processes -- 3.12 Covariance Function of a 
       Periodic Random Process -- 3.12.1 Harmonic Signal with a 
       Constant Magnitude -- 3.12.2 A Mixture of Harmonic Signals
       -- 3.12.3 Harmonic Signal with Random Magnitude and Phase 
       -- 3.13 Frequently Used Covariance Functions -- 3.14 
       Normal (Gaussian) Random Processes -- 3.15 White Gaussian 
       Noise (WGN) -- 4. Advanced Topics in Random Processes -- 
       4.1 Continuity, Differentiability and Integrability of a 
       Random Process -- 4.1.1 Convergence and Continuity -- 
       4.1.2 Differentiability -- 4.1.3 Integrability -- 4.2 
       Elements of System Theory -- 4.2.1 General Remarks -- 
       4.2.2 Continuous SISO Systems -- 4.2.3 Discrete Linear 
       Systems -- 4.2.4 MIMO Systems -- 4.2.5 Description of Non-
       Linear Systems -- 4.3 Zero Memory Non-Linear 
       Transformation of Random Processes -- 4.3.1 Transformation
       of Moments and Cumulants -- 4.3.1.1 Direct Method -- 
       4.3.1.2 The Rice Method -- 4.3.2 Cumulant Method -- 4.4 
       Cumulant Analysis of Non-Linear Transformation of Random 
       Processes -- 4.4.1 Cumulants of the Marginal PDF -- 4.4.2 
       Cumulant Method of Analysis of Non-Gaussian Random 
       Processes -- 4.5 Linear Transformation of Random Processes
505 8  4.5.1 General Expression for Moment and Cumulant Functions
       at the Output of a Linear System -- 4.5.1.1 Transformation
       of Moment and Cumulant Functions -- 4.5.1.2 Linear Time-
       Invariant System Driven by a Stationary Process -- 4.5.2 
       Analysis of Linear MIMO Systems -- 4.5.3 Cumulant Method 
       of Analysis of Linear Transformations -- 4.5.4 
       Normalization of the Output Process by a Linear System -- 
       4.6 Outages of Random Processes -- 4.6.1 General 
       Considerations -- 4.6.2 Average Level Crossing Rate and 
       the Average Duration of the Upward Excursions -- 4.6.3 
       Level Crossing Rate of a Gaussian Random Process -- 4.6.4 
       Level Crossing Rate of the Nakagami Process -- 4.6.5 
       Concluding Remarks -- 4.7 Narrow Band Random Processes -- 
       4.7.1 Definition of the Envelope and Phase of Narrow Band 
       Processes -- 4.7.2 The Envelope and the Phase 
       Characteristics -- 4.7.2.1 Blanc-Lapierre Transformation -
       - 4.7.2.2 Kluyver Equation -- 4.7.2.3 Relations Between 
       Moments of p(A(n)) (a(n)) and p(i)(I) -- 4.7.2.4 The Gram-
       Charlier Series for p(xR) (x) and p(i)(I) -- 4.7.3 
       Gaussian Narrow Band Process -- 4.7.3.1 First Order 
       Statistics -- 4.7.3.2 Correlation Function of the In-phase
       and Quadrature Components -- 4.7.3.3 Second Order 
       Statistics of the Envelope -- 4.7.3.4 Level Crossing Rate 
       -- 4.7.4 Examples of Non-Gaussian Narrow Band Random 
       Processes -- 4.7.4.1 K Distribution -- 4.7.4.2 Gamma 
       Distribution -- 4.7.4.3 Log-Normal Distribution -- 4.7.4.4
       A Narrow Band Process with Nakagami Distributed Envelope -
       - 4.8 Spherically Invariant Processes -- 4.8.1 Definitions
       -- 4.8.2 Properties -- 4.8.2.1 Joint PDF of a SIRV -- 
       4.8.2.2 Narrow Band SIRVs -- 4.8.3 Examples -- 5. Markov 
       Processes and Their Description -- 5.1 Definitions -- 
       5.1.1 Markov Chains -- 5.1.2 Markov Sequences -- 5.1.3 A 
       Discrete Markov Process -- 5.1.4 Continuous Markov 
       Processes 
505 8  5.1.5 Differential Form of the Kolmogorov-Chapman Equation
       -- 5.2 Some Important Markov Random Processes -- 5.2.1 One
       -Dimensional Random Walk -- 5.2.1.1 Unrestricted Random 
       Walk -- 5.2.2 Markov Processes with Jumps -- 5.2.2.1 The 
       Poisson Process -- 5.2.2.2 A Birth Process -- 5.2.2.3 A 
       Death Process -- 5.2.2.4 A Death and Birth Process -- 5.3 
       The Fokker-Planck Equation -- 5.3.1 Preliminary Remarks --
       5.3.2 Derivation of the Fokker-Planck Equation -- 5.3.3 
       Boundary Conditions -- 5.3.4 Discrete Model of a 
       Continuous Homogeneous Markov Process -- 5.3.5 On the 
       Forward and Backward Kolmogorov Equations -- 5.3.6 Methods
       of Solution of the Fokker-Planck Equation -- 5.3.6.1 
       Method of Separation of Variables -- 5.3.6.2 The Laplace 
       Transform Method -- 5.3.6.3 Transformation to the 
       Schrödinger Equations -- 5.4 Stochastic Differential 
       Equations -- 5.4.1 Stochastic Integrals -- 5.5 Temporal 
       Symmetry of the Diffusion Markov Process -- 5.6 High Order
       Spectra of Markov Diffusion Processes -- 5.7 Vector Markov
       Processes -- 5.7.1 Definitions -- 5.7.1.1 A Gaussian 
       Process with a Rational Spectrum -- 5.8 On Properties of 
       Correlation Functions of One-Dimensional Markov Processes 
       -- 6. Markov Processes with Random Structures -- 6.1 
       Introduction -- 6.2 Markov Processes with Random Structure
       and Their Statistical Description -- 6.2.1 Processes with 
       Random Structure and Their Classification -- 6.2.2 
       Statistical Description of Markov Processes with Random 
       Structure -- 6.2.3 Generalized Fokker-Planck Equation for 
       Random Processes with Random Structure and Distributed 
       Transitions -- 6.2.4 Moment and Cumulant Equations of a 
       Markov Process with Random Structure -- 6.3 Approximate 
       Solution of the Generalized Fokker-Planck Equations -- 
       6.3.1 Gram-Charlier Series Expansion -- 6.3.1.1 
       Eigenfunction Expansion -- 6.3.1.2 Small Intensity 
       Approximation 
505 8  6.3.1.3 Form of the Solution for Large Intensity -- 6.3.2 
       Solution by the Perturbation Method for the Case of Low 
       Intensities of Switching -- 6.3.2.1 General Small 
       Parameter Expansion of Eigenvalues and Eigenfunctions -- 
       6.3.2.2 Perturbation of Y(0)(x) -- 6.3.3 High Intensity 
       Solution -- 6.3.3.1 Zero Average Current Condition -- 
       6.3.3.2 Asymptotic Solution P(x) -- 6.3.3.3 Case of a 
       Finite Intensity v -- 6.4 Concluding Remarks -- 7. 
       Synthesis of Stochastic Differential Equations -- 7.1 
       Introduction -- 7.2 Modeling of a Scalar Random Process 
       Using a First Order SDE -- 7.2.1 General Synthesis 
       Procedure for the First Order SDE -- 7.2.2 Synthesis of an
       SDE with PDF Defined on a Part of the Real Axis -- 7.2.3 
       Synthesis of l Processes -- 7.2.4 Non-Diffusion Markov 
       Models of Non-Gaussian Exponentially Correlated Processes 
       -- 7.2.4.1 Exponentially Correlated Markov Chain-DAR(1) 
       and Its Continuous Equivalent -- 7.2.4.2 A Mixed Process 
       with Exponential Correlation -- 7.3 Modeling of a One-
       Dimensional Random Process on the Basis of a Vector SDE --
       7.3.1 Preliminary Comments -- 7.3.2 Synthesis Procedure of
       a (l, w) Process -- 7.3.3 Synthesis of a Narrow Band 
       Process Using a Second Order SDE -- 7.3.3.1 Synthesis of a
       Narrow Band Random Process Using a Duffing Type SDE -- 
       7.3.3.2 An SDE of the Van Der Pol Type -- 7.4 Synthesis of
       a One-Dimensional Process with a Gaussian Marginal PDF and
       Non-Exponential Correlation -- 7.5 Synthesis of Compound 
       Processes -- 7.5.1 Compound L Process -- 7.5.2 Synthesis 
       of a Compound Process with a Symmetrical PDF -- 7.6 
       Synthesis of Impulse Processes -- 7.6.1 Constant Magnitude
       Excitation -- 7.6.2 Exponentially Distributed Excitation -
       - 7.7 Synthesis of an SDE with Random Structure -- 8. 
       Applications -- 8.1 Continuous Communication Channels -- 
       8.1.1 A Mathematical Model of a Mobile Satellite 
       Communication Channel 
505 8  8.1.2 Modeling of a Single-Path Propagation 
520    Stochastic Methods & their Applications to Communications 
       presents a valuable approach to the modelling, synthesis 
       and numerical simulation of random processes with 
       applications in communications and related fields. The 
       authors provide a detailed account of random processes 
       from an engineering point of view and illustrate the 
       concepts with examples taken from the communications area.
       The discussions mainly focus on the analysis and synthesis
       of Markov models of random processes as applied to 
       modelling such phenomena as interference and fading in 
       communications. Encompassing both theory and practice, 
       this original text provides a unified approach to the 
       analysis and generation of continuous, impulsive and mixed
       random processes based on the Fokker-Planck equation for 
       Markov processes. Presents the cumulated analysis of 
       Markov processes Offers a SDE (Stochastic Differential 
       Equations) approach to the generation of random processes 
       with specified characteristics Includes the modelling of 
       communication channels and interfer ences using SDE 
       Features new results and techniques for the of solution of
       the generalized Fokker-Planck equation Essential reading 
       for researchers, engineers, and graduate and upper year 
       undergraduate students in the field of communications, 
       signal processing, control, physics and other areas of 
       science, this reference will have wide ranging appeal 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Telecommunication -- Mathematics.;Stochastic differential 
       equations 
655  4 Electronic books 
700 1  Lyandres, Vladimir 
700 1  Kontorovich, Valeri 
776 08 |iPrint version:|aPrimak, Serguei|tStochastic Methods and 
       Their Applications to Communications : Stochastic 
       Differential Equations Approach|dHoboken : John Wiley & 
       Sons, Incorporated,c2004|z9780470847411 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=470138|zClick to View