Record:   Prev Next
Author Bachrach, Steven M
Title Computational Organic Chemistry
Imprint Somerset : John Wiley & Sons, Incorporated, 2014
©2014
book jacket
Edition 2nd ed
Descript 1 online resource (640 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Cover -- Title Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Quantum Mechanics for Organic Chemistry -- 1.1 Approximations to the Schrodinger Equation---The Hartree--Fock Method -- 1.1.1 Nonrelativistic Mechanics -- 1.1.2 The Born--Oppenheimer Approximation -- 1.1.3 The One-Electron Wavefunction and the Hartree--Fock Method -- 1.1.4 Linear Combination of Atomic Orbitals (LCAO) Approximation -- 1.1.5 Hartree--Fock--Roothaan Procedure -- 1.1.6 Restricted Versus Unrestricted Wavefunctions -- 1.1.7 The Variational Principle -- 1.1.8 Basis Sets -- 1.1.8.1 Basis Set Superposition Error -- 1.2 Electron Correlation---Post-Hartree--Fock Methods -- 1.2.1 Configuration Interaction (CI) -- 1.2.2 Size Consistency -- 1.2.3 Perturbation Theory -- 1.2.4 Coupled-Cluster Theory -- 1.2.5 Multiconfiguration SCF (MCSCF) Theory and Complete Active Space SCF (CASSCF) Theory -- 1.2.6 Composite Energy Methods -- 1.3 Density Functional Theory (DFT) -- 1.3.1 The Exchange-Correlation Functionals: Climbing Jacob's Ladder -- 1.3.1.1 Double Hybrid Functionals -- 1.3.2 Dispersion-Corrected DFT -- 1.3.3 Functional Selection -- 1.4 Computational Approaches to Solvation -- 1.4.1 Microsolvation -- 1.4.2 Implicit Solvent Models -- 1.4.3 Hybrid Solvation Models -- 1.5 Hybrid QM/MM Methods -- 1.5.1 Molecular Mechanics -- 1.5.2 QM/MM Theory -- 1.5.3 ONIOM -- 1.6 Potential Energy Surfaces -- 1.6.1 Geometry Optimization -- 1.7 Population Analysis -- 1.7.1 Orbital-Based Population Methods -- 1.7.2 Topological Electron Density Analysis -- 1.8 Interview: Stefan Grimme -- References -- Chapter 2 Computed Spectral Properties and Structure Identification -- 2.1 Computed Bond Lengths and Angles -- 2.2 IR Spectroscopy -- 2.3 Nuclear Magnetic Resonance -- 2.3.1 General Considerations -- 2.3.2 Scaling Chemical Shift Values -- 2.3.3 Customized Density Functionals and Basis Sets
2.3.4 Methods for Structure Prediction -- 2.3.5 Statistical Approaches to Computed Chemical Shifts -- 2.3.6 Computed Coupling Constants -- 2.3.7 Case Studies -- 2.3.7.1 Hexacyclinol -- 2.3.7.2 Maitotoxin -- 2.3.7.3 Vannusal B -- 2.3.7.4 Conicasterol F -- 2.3.7.5 1-Adamantyl Cation -- 2.4 Optical Rotation, Optical Rotatory Dispersion, Electronic Circular Dichroism, and Vibrational Circular Dichroism -- 2.4.1 Case Studies -- 2.4.1.1 Solvent Effect -- 2.4.1.2 Chiral Solvent Imprinting -- 2.4.1.3 Plumericin and Prismatomerin -- 2.4.1.4 2,3-Hexadiene -- 2.4.1.5 Multilayered Paracyclophane -- 2.4.1.6 Optical Activity of an Octaphyrin -- 2.5 Interview: Jonathan Goodman -- References -- Chapter 3 Fundamentals of Organic Chemistry -- 3.1 Bond Dissociation Enthalpy -- 3.1.1 Case Study of BDE: Trends in the R--X BDE -- 3.2 Acidity -- 3.2.1 Case Studies of Acidity -- 3.2.1.1 Carbon Acidity of Strained Hydrocarbons -- 3.2.1.2 Origin of the Acidity of Carboxylic Acids -- 3.2.1.3 Acidity of the Amino Acids -- 3.3 Isomerism and Problems With DFT -- 3.3.1 Conformational Isomerism -- 3.3.2 Conformations of Amino Acids -- 3.3.3 Alkane Isomerism and DFT Errors -- 3.3.3.1 Chemical Consequences of Dispersion -- 3.4 Ring Strain Energy -- 3.4.1 RSE of Cyclopropane (28) and Cylcobutane (29) -- 3.5 Aromaticity -- 3.5.1 Aromatic Stabilization Energy (ASE) -- 3.5.2 Nucleus-Independent Chemical Shift (NICS) -- 3.5.3 Case Studies of Aromatic Compounds -- 3.5.3.1 [n]Annulenes -- 3.5.3.2 The Mills--Nixon Effect -- 3.5.3.3 Aromaticity Versus Strain -- 3.5.4 π--π Stacking -- 3.6 Interview: Professor Paul Von Rague Schleyer -- References -- Chapter 4 Pericyclic Reactions -- 4.1 The Diels--Alder Reaction -- 4.1.1 The Concerted Reaction of 1,3-Butadiene with Ethylene -- 4.1.2 The Nonconcerted Reaction of 1,3-Butadiene with Ethylene
4.1.3 Kinetic Isotope Effects and the Nature of the Diels--Alder Transition State -- 4.1.4 Transition State Distortion Energy -- 4.2 The Cope Rearrangement -- 4.2.1 Theoretical Considerations -- 4.2.2 Computational Results -- 4.2.3 Chameleons and Centaurs -- 4.3 The Bergman Cyclization -- 4.3.1 Theoretical Considerations -- 4.3.2 Activation and Reaction Energies of the Parent Bergman Cyclization -- 4.3.3 The cd Criteria and Cyclic Enediynes -- 4.3.4 Myers--Saito and Schmittel Cyclization -- 4.4 Bispericyclic Reactions -- 4.5 Pseudopericyclic Reactions -- 4.6 Torquoselectivity -- 4.7 Interview: Professor Weston Thatcher Borden -- References -- Chapter 5 Diradicals and Carbenes -- 5.1 Methylene -- 5.1.1 Theoretical Considerations of Methylene -- 5.1.2 The H--C--H Angle in Triplet Methylene -- 5.1.3 The Methylene and Dichloromethylene Singlet--Triplet Energy Gap -- 5.2 Phenylnitrene and Phenylcarbene -- 5.2.1 The Low Lying States of Phenylnitrene and Phenylcarbene -- 5.2.2 Ring Expansion of Phenylnitrene and Phenylcarbene -- 5.2.3 Substituent Effects on the Rearrangement of Phenylnitrene -- 5.3 Tetramethyleneethane -- 5.3.1 Theoretical Considerations of Tetramethyleneethane -- 5.3.2 Is TME a Ground-State Singlet or Triplet? -- 5.4 Oxyallyl Diradical -- 5.5 Benzynes -- 5.5.1 Theoretical Considerations of Benzyne -- 5.5.2 Relative Energies of the Benzynes -- 5.5.3 Structure of m-Benzyne -- 5.5.4 The Singlet--Triplet Gap and Reactivity of the Benzynes -- 5.6 Tunneling of Carbenes -- 5.6.1 Tunneling control -- 5.7 Interview: Professor Henry ̀̀Fritz'' Schaefer -- 5.8 Interview: Professor Peter R. Schreiner -- References -- Chapter 6 Organic Reactions of Anions -- 6.1 Substitution Reactions -- 6.1.1 The Gas Phase SN2 Reaction -- 6.1.2 Effects of Solvent on SN2 Reactions -- 6.2 Asymmetric Induction Via 1,2-Addition to Carbonyl Compounds
6.3 Asymmetric Organocatalysis of Aldol Reactions -- 6.3.1 Mechanism of Amine-Catalyzed Intermolecular Aldol Reactions -- 6.3.2 Mechanism of Proline-Catalyzed Intramolecular Aldol Reactions -- 6.3.3 Comparison with the Mannich Reaction -- 6.3.4 Catalysis of the Aldol Reaction in Water -- 6.3.5 Another Organocatalysis Example---The Claisen Rearrangement -- 6.4 Interview: Professor Kendall N. Houk -- References -- Chapter 7 Solution-Phase Organic Chemistry -- 7.1 Aqueous Diels--Alder Reactions -- 7.2 Glucose -- 7.2.1 Models Compounds: Ethylene Glycol and Glycerol -- 7.2.1.1 Ethylene Glycol -- 7.2.1.2 Glycerol -- 7.2.2 Solvation Studies of Glucose -- 7.3 Nucleic Acids -- 7.3.1 Nucleic Acid Bases -- 7.3.1.1 Cytosine -- 7.3.1.2 Guanine -- 7.3.1.3 Adenine -- 7.3.1.4 Uracil and Thymine -- 7.3.2 Base Pairs -- 7.4 Amino Acids -- 7.5 Interview: Professor Christopher J. Cramer -- References -- Chapter 8 Organic Reaction Dynamics -- 8.1 A Brief Introduction To Molecular Dynamics Trajectory Computations -- 8.1.1 Integrating the Equations of Motion -- 8.1.2 Selecting the PES -- 8.1.3 Initial Conditions -- 8.2 Statistical Kinetic Theories -- 8.3 Examples of Organic Reactions With Non-Statistical Dynamics -- 8.3.1 [1,3]-Sigmatropic Rearrangement of Bicyclo[3.2.0]hex-2-ene -- 8.3.2 Life in the Caldera: Concerted versus Diradical Mechanisms -- 8.3.2.1 Rearrangement of Vinylcyclopropane to Cyclopentene -- 8.3.2.2 Bicyclo[3.1.0]hex-2-ene 20 -- 8.3.2.3 Cyclopropane Stereomutation -- 8.3.3 Entrance into Intermediates from Above -- 8.3.3.1 Deazetization of 2,3-Diazabicyclo[2.2.1]hept-2-ene 31 -- 8.3.4 Avoiding Local Minima -- 8.3.4.1 Methyl Loss from Acetone Radical Cation -- 8.3.4.2 Cope Rearrangement of 1,2,6-Heptatriene -- 8.3.4.3 The SN2 Reaction: HO-+CH3F -- 8.3.4.4 Reaction of Fluoride with Methyl Hydroperoxide -- 8.3.5 Bifurcating Surfaces: One TS, Two Products
8.3.5.1 C2--C6 Enyne Allene Cyclization -- 8.3.5.2 Cycloadditions Involving Ketenes -- 8.3.5.3 Diels--Alder Reactions: Steps toward Predicting Dynamic Effects on Bifurcating Surfaces -- 8.3.6 Stepwise Reaction on a Concerted Surface -- 8.3.6.1 Rearrangement of Protonated Pinacolyl Alcohol -- 8.3.7 Roaming Mechanism -- 8.3.8 A Roundabout SN2 reaction -- 8.3.9 Hydroboration: Dynamical or Statistical? -- 8.3.10 A Look at the Wolff Rearrangement -- 8.4 Conclusions -- 8.5 Interview: Professor Daniel Singleton -- References -- Chapter 9 Computational Approaches to Understanding Enzymes -- 9.1 Models for Enzymatic Activity -- 9.2 Strategy for Computational Enzymology -- 9.2.1 High Level QM/MM Computations of Enzymes -- 9.2.2 Chorismate Mutase -- 9.2.3 Catechol-O-Methyltransferase (COMT) -- 9.3 De Novo Design of Enzymes -- References -- Index -- Supplemental Images
STEVEN M. BACHRACH is the Dr. D. R. Semmes Distinguished Professor of Chemistry at Trinity University. Dr. Bachrach has published some 125 articles. With the support of the National Science Foundation and the Welch Foundation, he researches computational approaches to build our understanding of nucleophilic substitution reactions and the role of solvents
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Bachrach, Steven M. Computational Organic Chemistry Somerset : John Wiley & Sons, Incorporated,c2014 9781118291924
Subject Chemistry, Organic -- Mathematical models.;Chemistry, Organic -- Mathematics.;Computational chemistry
Electronic books
Record:   Prev Next