Record 2 of 2
Record:   Prev Next
Author Adem, Alejandro, author
Title Orbifolds and stringy topology / Alejandro Adem, Johann Leida and Yongbin Ruan
Imprint Cambridge : Cambridge University Press, 2007
book jacket
Descript 1 online resource (xi, 149 pages) : digital, PDF file(s)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Cambridge tracts in mathematics ; 171
Cambridge tracts in mathematics ; 171
Note Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Foundations -- Cohomology, bundles and morphisms -- Orbifold K-theory -- Chen-Ruan cohomology -- Calculating Chen-Ruan cohomology
An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples
TAEBDC; 2009
Link Print version: 9780521870047
Subject Orbifolds
Homology theory
Quantum theory
String models
Topology
Alt Author Leida, Johann, author
Ruan, Yongbin, 1963- author
Alt Title Orbifolds & Stringy Topology
Record 2 of 2
Record:   Prev Next