Record:   Prev Next
Author Reay, David
Title Process Intensification : Engineering for Efficiency, Sustainability and Flexibility
Imprint Oxford : Elsevier Science & Technology, 2013
©2013
book jacket
Edition 2nd ed
Descript 1 online resource (624 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Isotopes in Organic Chemistry Ser
Isotopes in Organic Chemistry Ser
Note Front Cover -- Process Intensification -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgements -- Introduction -- References -- 1 A Brief History of Process Intensification -- 1.1 Introduction -- 1.2 Rotating boilers -- 1.2.1 The rotating boiler/turbine concept -- 1.2.2 NASA work on rotating boilers -- 1.3 The rotating heat pipe -- 1.3.1 Rotating air conditioning unit -- 1.4 The chemical process industry - the process intensification breakthrough at ICI -- 1.5 Separators -- 1.5.1 The Podbielniak extractor -- 1.5.2 Centrifugal evaporators -- 1.5.3 The still of John Moss -- 1.5.4 Extraction research in Bulgaria -- 1.6 Reactors -- 1.6.1 Catalytic plate reactors -- 1.6.2 Polymerisation reactors -- 1.6.3 Rotating fluidised bed reactor -- 1.6.4 Reactors for space experiments -- 1.6.5 Towards perfect reactors -- 1.7 Non-chemical industry-related applications of rotating heat and mass transfer -- 1.7.1 Rotating heat transfer devices -- 1.7.1.1 Liquid cooled rotating anodes -- 1.7.1.2 The Audiffren Singrun (AS) machine -- 1.7.1.3 John Coney rotating unit -- 1.8 Where are we today? -- 1.8.1 Clean technologies -- 1.8.2 Integration of process intensification and renewable energies -- 1.8.3 PI and carbon capture -- 1.9 Summary -- References -- 2 Process Intensification - An Overview -- 2.1 Introduction -- 2.2 What is process intensification? -- 2.3 The original ICI PI strategy -- 2.4 The advantages of PI -- 2.4.1 Safety -- 2.4.2 The environment -- 2.4.3 Energy -- 2.4.3.1 Early UK energy assessments -- 2.4.3.2 Current UK strategy on PI -- 2.4.3.3 A major European initiative -- 2.4.3.4 Support for PI in the US -- 2.4.4 The business process -- 2.4.4.1 The PI 'Project House' at Degussa -- 2.4.4.2 Benefits of PI for Rhodia -- 2.5 Some obstacles to PI -- 2.6 A way forward -- 2.7 To whet the reader's appetite
2.8 Equipment summary - finding your way around this book -- 2.9 Summary -- References -- 3 The Mechanisms Involved in Process Intensification -- 3.1 Introduction -- 3.2 Intensified heat transfer - the mechanisms involved -- 3.2.1 Classification of enhancement techniques -- 3.2.2 Passive enhancement techniques -- 3.2.2.1 Treated surfaces -- 3.2.2.2 Extended surfaces -- 3.2.2.3 Swirl flow devices -- 3.2.2.4 Additives (for liquids and gases) -- 3.2.2.5 Surface catalysis -- 3.2.3 Active enhancement methods -- 3.2.3.1 Mechanical aids -- 3.2.3.2 Fluid vibration -- 3.2.3.3 Electrostatic fields -- 3.2.3.4 Rotation -- 3.2.3.5 Induced flow instabilities -- 3.2.4 System impact of enhancement/intensification -- 3.3 Intensified mass transfer - the mechanisms involved -- 3.3.1 Rotation -- 3.3.2 Vibration -- 3.3.3 Mixing -- 3.4 Electrically enhanced processes - the mechanisms -- 3.5 Micro fluidics -- 3.5.1 Electrokinetics -- 3.5.2 Magnetohydrodynamics (MHD) -- 3.5.3 Opto-micro-fluidics -- 3.6 Pressure -- 3.7 Summary -- References -- 4 Compact and Micro-heat Exchangers -- 4.1 Introduction -- 4.2 Compact heat exchangers -- 4.2.1 The plate heat exchanger -- 4.2.2 Printed circuit heat exchangers (PCHE) -- 4.2.3 The Chart-flo heat exchanger -- 4.2.4 Polymer film heat exchanger -- 4.2.5 Foam heat exchangers -- 4.2.6 Mesh heat exchangers -- 4.3 Micro-heat exchangers -- 4.4 What about small channels? -- 4.5 Nano-fluids -- 4.6 Summary -- References -- 5 Reactors -- 5.1 Reactor engineering theory -- 5.1.1 Reaction kinetics -- 5.1.2 Residence time distributions (RTDs) -- 5.1.3 Heat and mass transfer in reactors -- 5.1.3.1 Mass transfer -- 5.1.3.2 Heat transfer -- 5.2 Spinning disc reactors -- 5.2.1 Exploitation of centrifugal fields -- 5.2.2 The desktop continuous process -- 5.2.3 The spinning disc reactor -- 5.2.4 The Nusselt flow model -- 5.2.5 Mass transfer
5.2.6 Heat transfer -- 5.2.7 Film-flow instability -- 5.2.8 Film-flow studies -- 5.2.9 Heat/mass transfer performance -- 5.2.10 Spinning disc reactor applications -- 5.2.10.1 Strategic considerations -- 5.3 Other rotating reactors -- 5.3.1 Rotor stator reactors: the STT reactor -- 5.3.2 Taylor-Couette reactor -- 5.3.2.1 Applications -- 5.3.3 Rotating packed bed reactors -- 5.4 Oscillatory baffled reactors (OBRs) -- 5.4.1 Gas-liquid systems -- 5.4.2 Liquid-liquid systems -- 5.4.3 Heat transfer -- 5.4.4 OBR design -- 5.4.5 Biological applications -- 5.4.6 Solids suspension -- 5.4.7 Crystallisation -- 5.4.8 Oscillatory meso-reactors: scaling OBRs down -- 5.4.9 Case study -- 5.5 Micro-reactors (including hex-reactors) -- 5.5.1 The catalytic plate reactor (CPR) -- 5.5.1.1 Steam reforming -- 5.5.1.2 Methane reforming -- 5.5.1.3 Fischer-Tropsch synthesis -- 5.5.2 HEX-reactors -- 5.5.2.1 The Alfa Laval plate heat exchanger reactor -- 5.5.2.2 The HELIX reactor -- 5.5.2.3 The PCR - printed circuit reactor -- 5.5.2.4 The multiple adiabatic-bed PCR -- 5.5.2.5 The chart compact heat exchanger reactors -- 5.5.3 The corning micro-structured reactor -- 5.5.4 Constant power reactors -- 5.5.4.1 Case study -- 5.6 Field-enhanced reactions/reactors -- 5.6.1 Induction-heated reactor -- 5.6.2 Sonochemical reactors -- 5.6.2.1 Biological applications of ultrasound -- 5.6.3 Microwave enhancement -- 5.6.4 Plasma reactors -- 5.6.5 Laser-induced reactions -- 5.7 Reactive separations -- 5.7.1 Reactive distillation -- 5.7.2 Reactive extraction -- 5.7.3 Reactive adsorption -- 5.8 Membrane reactors -- 5.8.1 Tubular membrane reactor -- 5.8.2 Membrane slurry reactor -- 5.8.3 Biological applications of membrane reactors -- 5.9 Supercritical operation -- 5.9.1 Applications -- 5.10 Miscellaneous intensified reactor types -- 5.10.1 The Torbed reactor -- 5.10.1.1 Applications
5.10.2 Catalytic reactive extruders -- 5.10.3 Heat pipe reactors -- 5.11 Summary -- References -- 6 Intensification of Separation Processes -- 6.1 Introduction -- 6.2 Distillation -- 6.2.1 Distillation - dividing wall columns -- 6.2.2 Compact heat exchangers inside the column -- 6.2.3 Cyclic distillation systems -- 6.2.4 HiGee -- 6.2.4.1 Principal HiGee operating features -- 6.2.4.2 Phase inversion -- 6.2.4.3 Modelling of rotating packed beds -- 6.3 Centrifuges -- 6.3.1 Conventional types -- 6.3.2 The gas centrifuge -- 6.4 Membranes -- 6.5 Drying -- 6.5.1 Electric drying and dewatering methods -- 6.5.1.1 Microwaves -- 6.5.1.2 Radio frequency fields -- 6.5.2 Membranes for dehydration -- 6.6 Precipitation and crystallisation -- 6.6.1 The environment for particle formation -- 6.6.2 The spinning cone -- 6.6.3 Electric fields to aid crystallisation of thin films -- 6.7 Mop fan/deduster -- 6.7.1 Description of the equipment -- 6.7.2 Capture mechanism/efficiency -- 6.7.3 Applications -- 6.8 Electrolysis -- 6.8.1 Introduction -- 6.8.2 The effect of microgravity -- 6.8.3 The effect of high gravity -- 6.8.4 Current supply -- 6.8.5 Rotary electrolysis cell design -- 6.8.5.1 Instrumentation for the rotary cell -- 6.8.5.2 Static electrolysis cell -- 6.8.6 The static cell tests -- 6.8.6.1 Effect of electrode structure -- 6.8.6.2 Effect of electrode spacing -- 6.8.7 The rotary cell experiments -- 6.8.7.1 The effect of centrifugal acceleration -- 6.9 Summary -- References -- 7 Intensified Mixing -- 7.1 Introduction -- 7.2 Inline mixers -- 7.2.1 Static mixers -- 7.2.1.1 Mixing in the context of micro-fluidics -- 7.2.1.2 Example of a mixer heat exchanger -- 7.2.2 Ejectors -- 7.2.3 Rotor stator mixers -- 7.3 Mixing on a spinning disc -- 7.4 Induction-heated mixer -- 7.5 Summary -- References -- 8 Application Areas - Petrochemicals and Fine Chemicals -- 8.1 Introduction
8.2 Refineries -- 8.2.1 Catalytic plate reactor opportunities -- 8.2.2 More speculative opportunities -- 8.3 Bulk chemicals -- 8.3.1 Stripping and gas clean-up -- 8.3.1.1 Chinese tail gas cleaning plant-acid stripping using an RPB -- 8.3.1.2 Acid stripping using HiGee at Dow Chemicals -- 8.3.1.3 Removal of NOx in industrial tail gas -- 8.3.1.4 Use of the 'Mop Fan' on an ammonium nitrate granulator dryer -- 8.3.2 Intensified methane reforming -- 8.3.3 The hydrocarbon chain -- 8.3.4 Reactive distillations for methyl and ethyl acetate -- 8.3.5 Formaldehyde from methanol using micro-reactors -- 8.3.6 Hydrogen peroxide production - the Degussa PI route -- 8.3.7 Olefin hydroformylation - use of a HEX-reactor -- 8.3.8 Polymerisation - the use of spinning disc reactors -- 8.3.8.1 Manufacture of polystyrene -- 8.3.8.2 Polycondensation -- 8.3.9 Akzo Nobel Chemicals - reactive distillation -- 8.3.10 The gas turbine reactor - a challenge for bulk chemical manufacture -- 8.3.10.1 Background -- 8.3.10.2 Factors affecting feasibility -- 8.3.10.3 Recuperative steam cooled gas turbine -- 8.3.10.4 Blade cooling with endothermic fuel -- 8.3.10.5 Gas turbine plus fuel cell -- 8.3.10.6 Reforming and reheat combusting in a gas turbine -- 8.3.10.7 Methane plate reformer coupled with a gas turbine -- 8.3.10.8 Partial oxidation gas turbine cycle (POGT) -- 8.3.10.9 Selected concepts -- Intercooling -- Recuperation -- Reheating -- 8.3.10.10 The 'Turbo-cracker' - an ICI concept -- 8.3.10.11 Cogeneration of ethylene and electricity -- 8.3.11 Other bulk chemical applications in the literature -- 8.4 Fine chemicals and pharmaceuticals -- 8.4.1 Penicillin extraction -- 8.4.2 AstraZeneca work on continuous reactors -- 8.4.3 Micro-reactor for barium sulphate production -- 8.4.4 Spinning disc reactor for barium carbonate production
8.4.5 Spinning disc reactor for producing a drug intermediate
Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Reay, David Process Intensification : Engineering for Efficiency, Sustainability and Flexibility Oxford : Elsevier Science & Technology,c2013 9780080983042
Subject Chemical processes - Environmental aspects
Electronic books
Alt Author Harvey, Adam
Ramshaw, Colin
Record:   Prev Next