Record:   Prev Next
Author Ji, Zhen-Gang
Title Hydrodynamics and Water Quality : Modeling Rivers, Lakes, and Estuaries
Imprint Hoboken : John Wiley & Sons, Incorporated, 2008
©2008
book jacket
Edition 1st ed
Descript 1 online resource (702 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- HYDRODYNAMICS AND WATER QUALITY -- CONTENTS -- Foreword -- Preface -- Acknowledgments -- ABBREVIATIONS -- 1 Introduction -- 1.1 Overview -- 1.2 Understanding Surface Waters -- 1.3 Modeling of Surface Waters -- 1.4 About This Book -- 2 Hydrodynamics -- 2.1 Hydrodynamic Processes -- 2.1.1 Water Density -- 2.1.2 Conservation Laws -- 2.1.3 Advection and Dispersion -- 2.1.4 Mass Balance Equation -- 2.1.5 Atmospheric Forcings -- 2.1.6 Coriolis Force and Geostrophic Flow -- 2.2 Governing Equations -- 2.2.1 Basic Approximations -- 2.2.2 Equations in Cartesian Coordinates -- 2.2.3 Vertical Mixing and Turbulence Models -- 2.2.4 Equations in Curvilinear Coordinates -- 2.2.5 Initial Conditions and Boundary Conditions -- 2.3 Temperature -- 2.3.1 Heatflux Components -- 2.3.2 Temperature Formulations -- 2.4 Hydrodynamic Modeling -- 2.4.1 Hydrodynamic Parameters and Data Requirements -- 2.4.2 Case Study I: Lake Okeechobee -- 2.4.3 Case Study II: St. Lucie Estuary and Indian River Lagoon -- 3 Sediment Transport -- 3.1 Overview -- 3.1.1 Properties of Sediment -- 3.1.2 Problems Associated with Sediment -- 3.2 Sediment Processes -- 3.2.1 Particle Settling -- 3.2.2 Horizontal Transport of Sediment -- 3.2.3 Resuspension and Deposition -- 3.2.4 Equations for Sediment Transport -- 3.2.5 Turbidity and Secchi Depth -- 3.3 Cohesive Sediment -- 3.3.1 Vertical Profiles of Cohesive Sediment Concentrations -- 3.3.2 Flocculation -- 3.3.3 Settling of Cohesive Sediment -- 3.3.4 Deposition of Cohesive Sediment -- 3.3.5 Resuspension of Cohesive Sediment -- 3.4 Noncohesive Sediment -- 3.4.1 Shields Diagram -- 3.4.2 Settling and Equilibrium Concentration -- 3.4.3 Bed Load Transport -- 3.5 Sediment Bed -- 3.5.1 Characteristics of Sediment Bed -- 3.5.2 A Model for Sediment Bed -- 3.6 Wind Waves -- 3.6.1 Wave Processes -- 3.6.2 Wind Wave Characteristics
3.6.3 Wind Wave Models -- 3.6.4 Combined Flows of Wind Waves and Currents -- 3.6.5 Case Study: Wind Wave Modeling in Lake Okeechobee -- 3.7 Sediment Transport Modeling -- 3.7.1 Sediment Parameters and Data Requirements -- 3.7.2 Case Study I: Lake Okeechobee -- 3.7.3 Case Study II: Blackstone River -- 4 Pathogens and Toxics -- 4.1 Overview -- 4.2 Pathogens -- 4.2.1 Bacteria, Viruses, and Protozoa -- 4.2.2 Pathogen Indicators -- 4.2.3 Processes Affecting Pathogens -- 4.3 Toxic Substances -- 4.3.1 Toxic Organic Chemicals -- 4.3.2 Metals -- 4.3.3 Sorption and Desorption -- 4.4 Fate and Transport Processes -- 4.4.1 Mathematical Formulations -- 4.4.2 Processes Affecting Fate and Decay -- 4.5 Contaminant Modeling -- 4.5.1 Case Study I: St. Lucie Estuary and Indian River Lagoon -- 4.5.2 Case Study II: Rockford Lake -- 5 Water Quality and Eutrophication -- 5.1 Overview -- 5.1.1 Eutrophication -- 5.1.2 Algae -- 5.1.3 Nutrients -- 5.1.4 Dissolved Oxygen -- 5.1.5 Governing Equations for Water Quality Processes -- 5.2 Algae -- 5.2.1 Algal Biomass and Chlorophyll -- 5.2.2 Equations for Algal Processes -- 5.2.3 Algal Growth -- 5.2.4 Algal Reduction -- 5.2.5 Silica and Diatom -- 5.2.6 Periphyton -- 5.3 Organic Carbon -- 5.3.1 Decomposition of Organic Carbon -- 5.3.2 Equations for Organic Carbon -- 5.3.3 Heterotrophic Respiration and Dissolution -- 5.4 Phosphorus -- 5.4.1 Equations for Phosphorus State Variables -- 5.4.2 Phosphorus Processes -- 5.5 Nitrogen -- 5.5.1 Forms of Nitrogen -- 5.5.2 Equations for Nitrogen State Variables -- 5.5.3 Nitrogen Processes -- 5.6 Dissolved Oxygen -- 5.6.1 Biochemical Oxygen Demand -- 5.6.2 Processes and Equations of Dissolved Oxygen -- 5.6.3 Effects of Photosynthesis and Respiration -- 5.6.4 Reaeration -- 5.6.5 Chemical Oxygen Demand -- 5.7 Sediment Fluxes -- 5.7.1 Sediment Diagenesis Model -- 5.7.2 Depositional Fluxes
5.7.3 Diagenesis Fluxes -- 5.7.4 Sediment Fluxes -- 5.7.5 Silica -- 5.7.6 Coupling with Sediment Resuspension -- 5.8 Submerged Aquatic Vegetation -- 5.8.1 Introduction -- 5.8.2 Equations for a SAV Model -- 5.8.3 Coupling with the Water Quality Model -- 5.9 Water Quality Modeling -- 5.9.1 Model Parameters and Data Requirements -- 5.9.2 Case Study I: Lake Okeechobee -- 5.9.3 Case Study II: St. Lucie Estuary and Indian River Lagoon -- 6 External Sources and TMDL -- 6.1 Point Sources and Nonpoint Sources -- 6.2 Atmospheric Deposition -- 6.3 Wetlands and Groundwater -- 6.3.1 Wetlands -- 6.3.2 Groundwater -- 6.4 Watershed Processes and TMDL Development -- 6.4.1 Watershed Processes -- 6.4.2 Total Maximum Daily Load (TMDL) -- 7 Mathematical Modeling and Statistical Analyses -- 7.1 Mathematical Models -- 7.1.1 Numerical Models -- 7.1.2 Model Selection -- 7.1.3 Spatial Resolution and Temporal Resolution -- 7.2 Statistical Analyses -- 7.2.1 Statistics for Model Performance Evaluation -- 7.2.2 Correlation and Regression -- 7.2.3 Spectral Analysis -- 7.2.4 Empirical Orthogonal Function (EOF) -- 7.2.5 EOF Case Study -- 7.3 Model Calibration and Verification -- 7.3.1 Model Calibration -- 7.3.2 Model Verification and Validation -- 7.3.3 Sensitivity Analysis -- 8 Rivers -- 8.1 Characteristics of Rivers -- 8.2 Hydrodynamic Processes in Rivers -- 8.2.1 River Flow and the Manning Equation -- 8.2.2 Advection and Dispersion in Rivers -- 8.2.3 Flow over Dams -- 8.3 Sediment and Water Quality Processes in Rivers -- 8.3.1 Sediment and Contaminants in Rivers -- 8.3.2 Impacts of River Flow on Water Quality -- 8.3.3 Eutrophication and Periphyton in Rivers -- 8.3.4 Dissolved Oxygen in Rivers -- 8.4 River Modeling -- 8.4.1 Case Study I: Blackstone River -- 8.4.2 Case Study II: Susquehanna River -- 9 Lakes and Reservoirs -- 9.1 Characteristics of Lakes and Reservoirs
9.1.1 Key Factors Controlling a Lake -- 9.1.2 Vertical Stratification -- 9.1.3 Biological Zones in Lakes -- 9.1.4 Characteristics of Reservoirs -- 9.1.5 Lake Pollution and Eutrophication -- 9.2 Hydrodynamic Processes -- 9.2.1 Inflow, Outflow, and Water Budget -- 9.2.2 Wind Forcing and Vertical Circulations -- 9.2.3 Seasonal Variations of Stratification -- 9.2.4 Gyres -- 9.2.5 Seiches -- 9.3 Sediment and Water Quality Processes in Lakes -- 9.3.1 Sediment Deposition in Reservoirs and Lakes -- 9.3.2 Algae and Nutrient Stratifications -- 9.3.3 Dissolved Oxygen Stratifications -- 9.3.4 Internal Cycling and Limiting Functions in Shallow Lakes -- 9.4 Lake Modeling -- 9.4.1 Case Study I: Lake Tenkiller -- 9.4.2 Case Study II: Lake Okeechobee -- 10 Estuaries and Coastal Waters -- 10.1 Introduction -- 10.2 Tidal Processes -- 10.2.1 Tides -- 10.2.2 Tidal Currents -- 10.2.3 Harmonic Analysis -- 10.3 Hydrodynamic Processes in Estuaries -- 10.3.1 Salinity -- 10.3.2 Estuarine Circulation -- 10.3.3 Stratifications of Estuaries -- 10.3.4 Flushing Time -- 10.4 Sediment and Water Quality Processes in Estuaries -- 10.4.1 Sediment Transport under Tidal Forcing -- 10.4.2 Flocculation of Cohesive Sediment and Sediment Trapping -- 10.4.3 Eutrophication in Estuaries -- 10.5 Estuarine and Coastal Modeling -- 10.5.1 Open Boundary Conditions -- 10.5.2 Case Study I: Morro Bay -- 10.5.3 Case Study II: St. Lucie Estuary and Indian River Lagoon -- Appendix A: Environmental Fluid Dynamics Code -- A1 Overview -- A2 Hydrodynamics -- A3 Sediment Transport -- A4 Toxic Chemical Transport and Fate -- A5 Water Quality and Eutrophication -- A6 Numerical Schemes -- A7 Documentation and Application Aids -- Appendix B: Conversion Factors -- Appendix C: Contents of Electronic Files -- C1 Channel Model -- C2 St. Lucie Estuary and Indian River Lagoon Model
C3 Lake Okeechobee Environmental Model -- C4 Documentation and Utility Programs -- Bibliography -- Index
This reference gets you up to speed on mathematical modeling for environmental and water resources management. With a practical, application-oriented approach, it discusses hydrodynamics, sediment processes, toxic fate and transport, and water quality and eutrophication in rivers, lakes, estuaries, and coastal waters. A companion CD-ROM includes a modeling package and electronic files of numerical models, case studies, and model results. This is a core reference for water quality professionals and an excellent text for graduate students
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Ji, Zhen-Gang Hydrodynamics and Water Quality : Modeling Rivers, Lakes, and Estuaries Hoboken : John Wiley & Sons, Incorporated,c2008 9780470135433
Subject Hydrodynamics.;Streamflow -- Mathematical models.;Sediment transport -- Mathematical models.;Water quality -- Measurement -- Mathematics
Electronic books
Alt Author Ji, Zhen-Gang
Record:   Prev Next