Record:   Prev Next
Author Budker, Dmitry
Title Optical Magnetometry
Imprint New York : Cambridge University Press, 2013
©2013
book jacket
Descript 1 online resource (432 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Cover -- Optical Magnetometry -- Title -- Copyright -- Contents -- Contributors -- Preface -- Part I Principles and techniques -- 1 General principles and characteristics of optical magnetometers -- 1.1 Introduction -- 1.1.1 Fundamental sensitivity limits -- 1.1.2 Zeeman shifts and atomic spin precession -- 1.1.3 Quantum beats and dynamic range -- 1.2 Model of an optical magnetometer -- 1.3 Density matrix and atomic polarization moments -- 1.4 Sensitivity and accuracy -- 1.4.1 Variational sensitivity (short-term resolution) and long-term stability -- 1.4.2 Parameter optimization -- 1.4.3 Absolute accuracy and systematic errors -- 1.5 Vector and scalar magnetometers -- 1.6 Applications -- 2 Quantum noise in atomic magnetometers -- 2.1 Introduction -- 2.2 Spin-projection noise -- 2.3 Faraday rotation measurements -- 2.4 Quantum back-action -- 2.5 Time correlation of spin-projection noise -- 2.6 Conditions for spin noise dominance -- 2.7 Spin projection limits on magnetic field sensitivity -- 2.8 Spin squeezing and atomic magnetometry -- 2.9 Conclusion -- 3 Noise, squeezing, and entanglement -- 3.1 Sources of noise -- 3.1.1 Atomic projection noise -- 3.1.2 Photon shot noise -- 3.1.3 Back-action noise and QND measurements -- 3.1.4 Technical (classical) noise -- 3.1.5 Entanglement and spin squeezing -- Spin squeezing -- Entanglement between atomic ensembles -- 3.2 A pulsed radiofrequency magnetometer and the projection noise limit -- 3.2.1 Pulsed RF magnetometry -- 3.2.2 Sensitivity and bandwidth -- 3.3 Light--atom interaction -- 3.3.1 A spin-polarized atomic ensemble interacting with polarized light -- 3.3.2 Conditional spin squeezing -- 3.3.3 Larmor precession, back-action noise, and two atomic ensembles -- 3.3.4 Swap and squeezing interaction -- 3.4 Demonstration of high-sensitivity, projection-noise-limited magnetometry
3.4.1 Setup, pulse sequence, and procedure -- 3.4.2 The projection-noise-limited magnetometer -- 3.5 Demonstration of entanglement-assisted magnetometry -- 3.6 Conclusions -- 4 Mx and Mz magnetometers -- 4.1 Dynamics of magnetic resonance in an alternating field -- 4.1.1 Bloch equations and Bloch sphere -- 4.1.2 Types of magnetic resonance signals: bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz and bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx signals -- 4.2 bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz and bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx magnetometers: general principles -- 4.2.1 Advantages and disadvantages of bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz magnetometers -- 4.2.2 Advantages and disadvantages of bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx magnetometers -- Mx-resonance registration techniques: self-oscillating and non-self-oscillating schemes -- bold0mu mumu MM2.5pt plus 1.59999pt minus 1.09999ptMMMMbold0mu mumu xx2.5pt plus 1.59999pt minus 1.09999ptxxxx-magnetometer sensor optimization -- 4.2.3 Attempts to combine advantages of bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx and bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz magnetometers:bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx--bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz tandems -- 4.3 Applications: radio-optical bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx and bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz magnetometers -- 4.3.1 Alkali Mz magnetometers -- Alkali--helium magnetometer -- Balanced K and Rb HFS magnetometers -- 4.3.2 bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx magnetometers -- Self-oscillating Cs magnetometer -- Non-self-oscillating K magnetometer -- 4.3.3 bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx--bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz tandems -- Rb Mx--Mz tandem -- Cs-K Mx--Mz tandem using a 4-quantum resonance -- Mx--MR tandem
4.4 Summary: bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx and bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz scheme limitations, prospects, and application areas -- 5 SERF magnetometers -- 5.1 Introduction -- 5.2 Spin-exchange collisions -- 5.2.1 The density-matrix equation -- 5.2.2 Simple model of spin exchange -- 5.3 Bloch equation description -- 5.4 Experimental realization -- 5.4.1 Classic SERF atomic magnetometer arrangement -- 5.4.2 Zeroing the magnetic field -- 5.4.3 Use of antirelaxation coatings -- 5.4.4 Comparison with SQUIDs -- 5.5 Fundamental sensitivity -- 6 Optical magnetometry with modulated light -- 6.1 Introduction -- 6.2 Typical experimental arrangements -- 6.3 Resonances in the magnetic field dependence -- 6.3.1 Frequency modulation -- 6.3.2 Amplitude modulation -- 6.3.3 Polarization modulation -- 6.4 Effects at high light powers -- 6.5 Nonlinear Zeeman effect -- 6.6 Magnetometric measurements with modulated light -- 6.7 Conclusion -- 7 Microfabricated atomic magnetometers -- 7.1 Introduction -- 7.2 Sensitivity scaling with size -- 7.3 Sensor fabrication -- 7.4 Vapor cells -- 7.5 Heating and thermal management -- 7.6 Performance -- 7.7 Applications of microfabricated magnetometers -- 7.8 Outlook -- 8 Nitrogen-vacancy centers in diamond -- 8.1 Introduction -- 8.1.1 Comparison with existing technologies -- 8.2 Historical background -- 8.2.1 Single-spin optically detected magnetic resonance -- 8.3 NV center physics -- 8.3.1 Intersystem crossing and optical pumping -- 8.3.2 Ground-state level structure and ODMR-based magnetometry -- 8.3.3 Interaction with environment -- Contributions to T2 -- Refocusing the dephasing -- 8.4 Experimental realizations -- 8.4.1 Near-field scanning probes and single-NV magnetometry -- Sensitivity and limitations -- 8.4.2 Wide-field array magnetic imaging -- 8.4.3 NV-ensemble magnetometers -- 8.5 Outlook
9 Magnetometry with cold atoms -- 9.1 Introduction -- 9.2 Experimental conditions -- 9.2.1 Constraints and advantages of using cold atoms for magnetometry -- 9.2.2 Cold samples of atoms above quantum degeneracy -- 9.3 Linear Faraday rotation with trapped atoms -- 9.4 Nonlinear Faraday rotation -- 9.4.1 Low-field, DC magnetometry -- 9.4.2 Coherence evolution -- 9.4.3 High-field, amplitude-modulated magneto-optical rotation -- 9.4.4 Paramagnetic nonlinear rotation -- 9.5 Magnetometry with ultra-cold atoms -- 9.5.1 Overview of ultra-cold atomic magnetometry methods -- Measurements via density modulations -- Spinor-condensate magnetometer -- Optical-lattice magnetometry -- 9.5.2 Figures of merit -- 9.5.3 Details of spinor magnetometry -- Spinor physics -- Spatial resolution -- 9.5.4 Comparison with thermal-atom magnetometry -- 9.5.5 Applications -- In vacuo applications -- Atmospheric-pressure samples -- 10 Helium magnetometers -- 10.1 Introduction -- 10.2 Helium magnetometer principles of operation -- 10.2.1 Helium resonance element -- 10.2.2 Helium optical pumping radiation sources -- 10.2.3 Optical pumping of metastable helium -- Discharge effects -- Light shifts -- 10.2.4 Observation of optically pumped helium -- 10.2.5 Observation of magnetic resonance signals in optically pumped helium -- Paramagnetic resonance: magnetically-driven spin precession (MSP) scalar mode -- Pi-pumping magnetic resonance -- Parametric resonance: bias field nulling (BFN) vector mode -- 10.3 Conclusions -- 11 Surface coatings for atomic magnetometry -- 11.1 Introduction and history -- 11.2 Wall relaxation mechanisms -- 11.2.1 Origin and time dependence of the disorienting interaction -- 11.2.2 Methods of investigation -- 11.2.3 Quantitative interpretation -- 11.3 Coating preparation -- 11.4 Light-induced atomic desorption (LIAD) -- 11.5 Recent characterization methods
12 Magnetic shielding -- 12.1 Introduction -- 12.2 Ferromagnetic shielding -- 12.2.1 Simplified estimation of ferromagnetic shielding efficiency for a static magnetic field -- 12.2.2 Multilayer ferromagnetic shielding -- Effect of shell shape -- Optimal shell separation -- Effect of openings -- 12.2.3 Optimization of permeability: annealing, degaussing, shaking, tapping -- Annealing -- Degaussing -- Mechanical shaking and tapping -- Shaking -- 12.2.4 Magnetic-field noise in ferromagnetic shielding -- 12.2.5 Examples of ferromagnetic shielding systems -- The Yashchuk et al. shielding system -- Magnetically shielded rooms -- 12.3 Ferrite shields -- 12.3.1 Permeability -- 12.3.2 Fabrication and the effect of an air gap -- 12.3.3 Thermal noise -- 12.4 Superconducting shields -- 12.4.1 Principles -- 12.4.2 Materials and fabrication -- 12.4.3 Image field -- Part II Applications -- 13 Remote detection magnetometry -- 13.1 Introduction -- 13.2 A remotely interrogated all-optical 87Rb magnetometer -- 13.3 Magnetometry with mesospheric sodium -- 14 Nuclear magnetic resonance -- 14.1 Introduction -- 14.2 The NMR Hamiltonian -- 14.3 Challenges associated with detection of NMR using atomic magnetometers -- 14.4 Remote detection -- 14.5 Solenoid matching of Zeeman resonance frequencies -- 14.6 Flux transformer -- 14.7 Nuclear quadrupole resonance -- 14.8 Zero-field nuclear magnetic resonance -- 14.8.1 Thermally polarized zero-field NMR J spectroscopy -- 14.8.2 Parahydrogen-enhanced zero-field NMR -- 14.8.3 Zeeman effects on J-coupled multiplets -- 14.9 Conclusions -- 15 Space magnetometry -- 15.1 Introduction -- 15.1.1 Achievements of space magnetometry -- 15.1.2 Challenges unique to space magnetometers -- 15.1.3 Magnetic sensors used in space missions -- 15.2 Alkali-vapor magnetometers in space applications
15.2.1 Initial development of Earth's-field alkali magnetometers
Comprehensive coverage of the principles, technology and diverse applications of optical magnetometry for graduate students and researchers in atomic physics
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Budker, Dmitry Optical Magnetometry New York : Cambridge University Press,c2013 9781107010352
Subject Magnetic fields -- Measurement.;Optical measurements.;Magnetic instruments
Electronic books
Alt Author Jackson Kimball, Derek F
Record:   Prev Next