Descript |
1 online resource (432 pages) |
|
text txt rdacontent |
|
computer c rdamedia |
|
online resource cr rdacarrier |
Note |
Cover -- Optical Magnetometry -- Title -- Copyright -- Contents -- Contributors -- Preface -- Part I Principles and techniques -- 1 General principles and characteristics of optical magnetometers -- 1.1 Introduction -- 1.1.1 Fundamental sensitivity limits -- 1.1.2 Zeeman shifts and atomic spin precession -- 1.1.3 Quantum beats and dynamic range -- 1.2 Model of an optical magnetometer -- 1.3 Density matrix and atomic polarization moments -- 1.4 Sensitivity and accuracy -- 1.4.1 Variational sensitivity (short-term resolution) and long-term stability -- 1.4.2 Parameter optimization -- 1.4.3 Absolute accuracy and systematic errors -- 1.5 Vector and scalar magnetometers -- 1.6 Applications -- 2 Quantum noise in atomic magnetometers -- 2.1 Introduction -- 2.2 Spin-projection noise -- 2.3 Faraday rotation measurements -- 2.4 Quantum back-action -- 2.5 Time correlation of spin-projection noise -- 2.6 Conditions for spin noise dominance -- 2.7 Spin projection limits on magnetic field sensitivity -- 2.8 Spin squeezing and atomic magnetometry -- 2.9 Conclusion -- 3 Noise, squeezing, and entanglement -- 3.1 Sources of noise -- 3.1.1 Atomic projection noise -- 3.1.2 Photon shot noise -- 3.1.3 Back-action noise and QND measurements -- 3.1.4 Technical (classical) noise -- 3.1.5 Entanglement and spin squeezing -- Spin squeezing -- Entanglement between atomic ensembles -- 3.2 A pulsed radiofrequency magnetometer and the projection noise limit -- 3.2.1 Pulsed RF magnetometry -- 3.2.2 Sensitivity and bandwidth -- 3.3 Light--atom interaction -- 3.3.1 A spin-polarized atomic ensemble interacting with polarized light -- 3.3.2 Conditional spin squeezing -- 3.3.3 Larmor precession, back-action noise, and two atomic ensembles -- 3.3.4 Swap and squeezing interaction -- 3.4 Demonstration of high-sensitivity, projection-noise-limited magnetometry |
|
3.4.1 Setup, pulse sequence, and procedure -- 3.4.2 The projection-noise-limited magnetometer -- 3.5 Demonstration of entanglement-assisted magnetometry -- 3.6 Conclusions -- 4 Mx and Mz magnetometers -- 4.1 Dynamics of magnetic resonance in an alternating field -- 4.1.1 Bloch equations and Bloch sphere -- 4.1.2 Types of magnetic resonance signals: bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz and bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx signals -- 4.2 bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz and bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx magnetometers: general principles -- 4.2.1 Advantages and disadvantages of bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz magnetometers -- 4.2.2 Advantages and disadvantages of bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx magnetometers -- Mx-resonance registration techniques: self-oscillating and non-self-oscillating schemes -- bold0mu mumu MM2.5pt plus 1.59999pt minus 1.09999ptMMMMbold0mu mumu xx2.5pt plus 1.59999pt minus 1.09999ptxxxx-magnetometer sensor optimization -- 4.2.3 Attempts to combine advantages of bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx and bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz magnetometers:bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx--bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz tandems -- 4.3 Applications: radio-optical bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx and bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz magnetometers -- 4.3.1 Alkali Mz magnetometers -- Alkali--helium magnetometer -- Balanced K and Rb HFS magnetometers -- 4.3.2 bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx magnetometers -- Self-oscillating Cs magnetometer -- Non-self-oscillating K magnetometer -- 4.3.3 bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx--bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz tandems -- Rb Mx--Mz tandem -- Cs-K Mx--Mz tandem using a 4-quantum resonance -- Mx--MR tandem |
|
4.4 Summary: bold0mu mumu MMRawMMMMbold0mu mumu xxRawxxxx and bold0mu mumu MMRawMMMMbold0mu mumu zzRawzzzz scheme limitations, prospects, and application areas -- 5 SERF magnetometers -- 5.1 Introduction -- 5.2 Spin-exchange collisions -- 5.2.1 The density-matrix equation -- 5.2.2 Simple model of spin exchange -- 5.3 Bloch equation description -- 5.4 Experimental realization -- 5.4.1 Classic SERF atomic magnetometer arrangement -- 5.4.2 Zeroing the magnetic field -- 5.4.3 Use of antirelaxation coatings -- 5.4.4 Comparison with SQUIDs -- 5.5 Fundamental sensitivity -- 6 Optical magnetometry with modulated light -- 6.1 Introduction -- 6.2 Typical experimental arrangements -- 6.3 Resonances in the magnetic field dependence -- 6.3.1 Frequency modulation -- 6.3.2 Amplitude modulation -- 6.3.3 Polarization modulation -- 6.4 Effects at high light powers -- 6.5 Nonlinear Zeeman effect -- 6.6 Magnetometric measurements with modulated light -- 6.7 Conclusion -- 7 Microfabricated atomic magnetometers -- 7.1 Introduction -- 7.2 Sensitivity scaling with size -- 7.3 Sensor fabrication -- 7.4 Vapor cells -- 7.5 Heating and thermal management -- 7.6 Performance -- 7.7 Applications of microfabricated magnetometers -- 7.8 Outlook -- 8 Nitrogen-vacancy centers in diamond -- 8.1 Introduction -- 8.1.1 Comparison with existing technologies -- 8.2 Historical background -- 8.2.1 Single-spin optically detected magnetic resonance -- 8.3 NV center physics -- 8.3.1 Intersystem crossing and optical pumping -- 8.3.2 Ground-state level structure and ODMR-based magnetometry -- 8.3.3 Interaction with environment -- Contributions to T2 -- Refocusing the dephasing -- 8.4 Experimental realizations -- 8.4.1 Near-field scanning probes and single-NV magnetometry -- Sensitivity and limitations -- 8.4.2 Wide-field array magnetic imaging -- 8.4.3 NV-ensemble magnetometers -- 8.5 Outlook |
|
9 Magnetometry with cold atoms -- 9.1 Introduction -- 9.2 Experimental conditions -- 9.2.1 Constraints and advantages of using cold atoms for magnetometry -- 9.2.2 Cold samples of atoms above quantum degeneracy -- 9.3 Linear Faraday rotation with trapped atoms -- 9.4 Nonlinear Faraday rotation -- 9.4.1 Low-field, DC magnetometry -- 9.4.2 Coherence evolution -- 9.4.3 High-field, amplitude-modulated magneto-optical rotation -- 9.4.4 Paramagnetic nonlinear rotation -- 9.5 Magnetometry with ultra-cold atoms -- 9.5.1 Overview of ultra-cold atomic magnetometry methods -- Measurements via density modulations -- Spinor-condensate magnetometer -- Optical-lattice magnetometry -- 9.5.2 Figures of merit -- 9.5.3 Details of spinor magnetometry -- Spinor physics -- Spatial resolution -- 9.5.4 Comparison with thermal-atom magnetometry -- 9.5.5 Applications -- In vacuo applications -- Atmospheric-pressure samples -- 10 Helium magnetometers -- 10.1 Introduction -- 10.2 Helium magnetometer principles of operation -- 10.2.1 Helium resonance element -- 10.2.2 Helium optical pumping radiation sources -- 10.2.3 Optical pumping of metastable helium -- Discharge effects -- Light shifts -- 10.2.4 Observation of optically pumped helium -- 10.2.5 Observation of magnetic resonance signals in optically pumped helium -- Paramagnetic resonance: magnetically-driven spin precession (MSP) scalar mode -- Pi-pumping magnetic resonance -- Parametric resonance: bias field nulling (BFN) vector mode -- 10.3 Conclusions -- 11 Surface coatings for atomic magnetometry -- 11.1 Introduction and history -- 11.2 Wall relaxation mechanisms -- 11.2.1 Origin and time dependence of the disorienting interaction -- 11.2.2 Methods of investigation -- 11.2.3 Quantitative interpretation -- 11.3 Coating preparation -- 11.4 Light-induced atomic desorption (LIAD) -- 11.5 Recent characterization methods |
|
12 Magnetic shielding -- 12.1 Introduction -- 12.2 Ferromagnetic shielding -- 12.2.1 Simplified estimation of ferromagnetic shielding efficiency for a static magnetic field -- 12.2.2 Multilayer ferromagnetic shielding -- Effect of shell shape -- Optimal shell separation -- Effect of openings -- 12.2.3 Optimization of permeability: annealing, degaussing, shaking, tapping -- Annealing -- Degaussing -- Mechanical shaking and tapping -- Shaking -- 12.2.4 Magnetic-field noise in ferromagnetic shielding -- 12.2.5 Examples of ferromagnetic shielding systems -- The Yashchuk et al. shielding system -- Magnetically shielded rooms -- 12.3 Ferrite shields -- 12.3.1 Permeability -- 12.3.2 Fabrication and the effect of an air gap -- 12.3.3 Thermal noise -- 12.4 Superconducting shields -- 12.4.1 Principles -- 12.4.2 Materials and fabrication -- 12.4.3 Image field -- Part II Applications -- 13 Remote detection magnetometry -- 13.1 Introduction -- 13.2 A remotely interrogated all-optical 87Rb magnetometer -- 13.3 Magnetometry with mesospheric sodium -- 14 Nuclear magnetic resonance -- 14.1 Introduction -- 14.2 The NMR Hamiltonian -- 14.3 Challenges associated with detection of NMR using atomic magnetometers -- 14.4 Remote detection -- 14.5 Solenoid matching of Zeeman resonance frequencies -- 14.6 Flux transformer -- 14.7 Nuclear quadrupole resonance -- 14.8 Zero-field nuclear magnetic resonance -- 14.8.1 Thermally polarized zero-field NMR J spectroscopy -- 14.8.2 Parahydrogen-enhanced zero-field NMR -- 14.8.3 Zeeman effects on J-coupled multiplets -- 14.9 Conclusions -- 15 Space magnetometry -- 15.1 Introduction -- 15.1.1 Achievements of space magnetometry -- 15.1.2 Challenges unique to space magnetometers -- 15.1.3 Magnetic sensors used in space missions -- 15.2 Alkali-vapor magnetometers in space applications |
|
15.2.1 Initial development of Earth's-field alkali magnetometers |
|
Comprehensive coverage of the principles, technology and diverse applications of optical magnetometry for graduate students and researchers in atomic physics |
|
Description based on publisher supplied metadata and other sources |
|
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries |
Link |
Print version: Budker, Dmitry Optical Magnetometry
New York : Cambridge University Press,c2013 9781107010352
|
Subject |
Magnetic fields -- Measurement.;Optical measurements.;Magnetic instruments
|
|
Electronic books
|
Alt Author |
Jackson Kimball, Derek F
|
|