Record:   Prev Next
Author Goodson, David Z
Title Mathematical Methods for Physical and Analytical Chemistry
Imprint Hoboken : John Wiley & Sons, Incorporated, 2011
©2011
book jacket
Edition 1st ed
Descript 1 online resource (404 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- Mathematical Methods for Physical and Analytical Chemistry -- Contents -- Preface -- List of Examples -- Greek Alphabet -- Part I. Calculus -- 1 Functions: General Properties -- 1.1 Mappings -- 1.2 Differentials and Derivatives -- 1.3 Partial Derivatives -- 1.4 Integrals -- 1.5 Critical Points -- 2 Functions: Examples -- 2.1 Algebraic Functions -- 2.2 Transcendental Functions -- 2.2.1 Logarithm and Exponential -- 2.2.2 Circular Functions -- 2.2.3 Gamma and Beta Functions -- 2.3 Functionals -- 3 Coordinate Systems -- 3.1 Points in Space -- 3.2 Coordinate Systems for Molecules -- 3.3 Abstract Coordinates -- 3.4 Constraints -- 3.4.1 Degrees of Freedom -- 3.4.2 Constrained Extrema -- 3.5 Differential Operators in Polar Coordinates -- 4 Integration -- 4.1 Change of Variables in Integrands -- 4.1.1 Change of Variable: Examples -- 4.1.2 Jacobian Determinant -- 4.2 Gaussian Integrals -- 4.3 Improper Integrals -- 4.4 Dirac Delta Function -- 4.5 Line Integrals -- 5 Numerical Methods -- 5.1 Interpolation -- 5.2 Numerical Differentiation -- 5.3 Numerical Integration -- 5.4 Random Numbers -- 5.5 Root Finding -- 5.6 Minimization -- 6 Complex Numbers -- 6.1 Complex Arithmetic -- 6.2 Fundamental Theorem of Algebra -- 6.3 The Argand Diagram -- 6.4 Functions of a Complex Variable -- 6.5 Branch Cuts -- 7 Extrapolation -- 7.1 Taylor Series -- 7.2 Partial Sums -- 7.3 Applications of Taylor Series -- 7.4 Convergence -- 7.5 Summation Approximants -- Part II. Statistics -- 8 Estimation -- 8.1 Error and Estimation -- 8.2 Probability Distributions -- 8.2.1 Probability Distribution Functions -- 8.2.2 The Normal Distribution -- 8.2.3 The Poisson Distribution -- 8.2.4 The Binomial Distribution -- 8.2.5 The Boltzmann Distribution -- 8.3 Outliers -- 8.4 Robust Estimation -- 9 Analysis of Significance -- 9.1 Confidence Intervals -- 9.2 Propagation of Error
9.3 Monte Carlo Simulation of Error -- 9.4 Significance of Difference -- 9.5 Distribution Testing -- 10 Fitting -- 10.1 Method of Least Squares -- 10.1.1 Polynomial Fitting -- 10.1.2 Weighted Least Squares -- 10.1.3 Generalizations of the Least-Squares Method -- 10.2 Fitting with Error in Both Variables -- 10.2.1 Uncontrolled Error in x -- 10.2.2 Controlled Error in x -- 10.3 Nonlinear Fitting -- 11 Quality of Fit -- 11.1 Confidence Intervals for Parameters -- 11.2 Confidence Band for a Calibration Line -- 11.3 Outliers and Leverage Points -- 11.4 Robust Fitting -- 11.5 Model Testing -- 12 Experiment Design -- 12.1 Risk Assessment -- 12.2 Randomization -- 12.3 Multiple Comparisons -- 12.3.1 ANOVA -- 12.3.2 Post-Hoc Tests -- 12.4 Optimization -- Part III. Differential Equations -- 13 Examples of Differential Equations -- 13.1 Chemical Reaction Rates -- 13.2 Classical Mechanics -- 13.2.1 Newtonian Mechanics -- 13.2.2 Lagrangian and Hamiltonian Mechanics -- 13.2.3 Angular Momentum -- 13.3 Differentials in Thermodynamics -- 13.4 Transport Equations -- 14 Solving Differential Equations, I -- 14.1 Basic Concepts -- 14.2 The Superposition Principle -- 14.3 First-Order ODE's -- 14.4 Higher-Order ODE's -- 14.5 Partial Differential Equations -- 15 Solving Differential Equations, II -- 15.1 Numerical Solution -- 15.1.1 Basic Algorithms -- 15.1.2 The Leapfrog Method -- 15.1.3 Systems of Differential Equations -- 15.2 Chemical Reaction Mechanisms -- 15.3 Approximation Methods -- 15.3.1 Taylor Series -- 15.3.2 Perturbation Theory -- Part IV. Linear Algebra -- 16 Vector Spaces -- 16.1 Cartesian Coordinate Vectors -- 16.2 Sets -- 16.3 Groups -- 16.4 Vector Spaces -- 16.5 Functions as Vectors -- 16.6 Hilbert Spaces -- 16.7 Basis Sets -- 17 Spaces of Functions -- 17.1 Orthogonal Polynomials -- 17.2 Function Resolution -- 17.3 Fourier Series -- 17.4 Spherical Harmonics
18 Matrices -- 18.1 Matrix Representation of Operators -- 18.2 Matrix Algebra -- 18.3 Matrix Operations -- 18.4 Pseudoinverse -- 18.5 Determinants -- 18.6 Orthogonal and Unitary Matrices -- 18.7 Simultaneous Linear Equations -- 19 Eigenvalue Equations -- 19.1 Matrix Eigenvalue Equations -- 19.2 Matrix Diagonalization -- 19.3 Differential Eigenvalue Equations -- 19.4 Hermitian Operators -- 19.5 The Variational Principle -- 20 Schrödinger's Equation -- 20.1 Quantum Mechanics -- 20.1.1 Quantum Mechanical Operators -- 20.1.2 The Wavefunction -- 20.1.3 The Basic Postulates -- 20.2 Atoms and Molecules -- 20.3 The One-Electron Atom -- 20.3.1 Orbitals -- 20.3.2 The Radial Equation -- 20.4 Hybrid Orbitals -- 20.5 Antisymmetry -- 20.6 Molecular Orbitals -- 21 Fourier Analysis -- 21.1 The Fourier Transform -- 21.2 Spectral Line Shapes -- 21.3 Discrete Fourier Transform -- 21.4 Signal Processing -- 21.4.1 Noise Filtering -- 21.4.2 Convolution -- A Computer Programs -- A.1 Robust Estimators -- A.2 FREML -- A.3 Nelder-Mead Simplex Optimization -- B Answers to Selected Exercises -- C Bibliography -- Index
Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical knowledge they need to understand the analytical and physical chemistry professional literature
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Goodson, David Z. Mathematical Methods for Physical and Analytical Chemistry Hoboken : John Wiley & Sons, Incorporated,c2011 9781118135204
Subject Mathematical physics.;Chemometrics
Electronic books
Alt Author Goodson, David Z
Record:   Prev Next