Record:   Prev Next
Author Maggiore, Michele
Title A Modern Introduction to Quantum Field Theory
Imprint Oxford : Oxford University Press, Incorporated, 2005
©2005
book jacket
Descript 1 online resource (394 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Oxford Master Series in Physics Ser. ; v.12
Oxford Master Series in Physics Ser
Note Intro -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Notation -- 1 Introduction -- 1.1 Overview -- 1.2 Typical Scales in High-energy Physics -- Further Reading -- Exercises -- 2 Lorentz and Poincare Symmetries in QFT -- 2.1 Lie Groups -- 2.2 The Lorentz Group -- 2.3 The Lorentz Algebra -- 2.4 Tensor Representations -- 2.4.1 Decomposition of Lorentz Tensors Under SO(3) -- 2.5 Spinorial Representations -- 2.5.1 Spinors in Non-Relativistic Quantum Mechanics -- 2.5.2 Spinors in the Relativistic Theory -- 2.6 Field Representations -- 2.6.1 Scalar Fields -- 2.6.2 Weyl Fields -- 2.6.3 Dirac Fields -- 2.6.4 Majorana Fields -- 2.6.5 Vector Fields -- 2.7 The Poincare Group -- 2.7.1 Representation on Fields -- 2.7.2 Representation on One-particle States -- Summary of Chapter -- Further Reading -- Exercises -- 3 Classical Field Theory -- 3.1 The Action Principle -- 3.2 Noether's Theorem -- 3.2.1 The Energy-momentum Tensor -- 3.3 Scalar Fields -- 3.3.1 Real Scalar Fields -- Klein-Gordon Equation -- 3.3.2 Complex Scalar field -- U(1) Charge -- 3.4 Spinor Fields -- 3.4.1 The Weyl Equation -- Helicity -- 3.4.2 The Dirac Equation -- 3.4.3 Chiral Symmetry -- 3.4.4 Majorana Mass -- 3.5 The Electromagnetic Field -- 3.5.1 Covariant form of The Free Maxwell Equations -- 3.5.2 Gauge Invariance -- Radiation and Lorentz Gauges -- 3.5.3 The Energy-momentum Tensor -- 3.5.4 Minimal and Non-minimal Coupling to Matter -- 3.6 First Quantization of Relativistic Wave Equations -- 3.7 Solved Problems -- The Fine Structure of the Hydrogen Atom -- Relativistic Energy Levels in a Magnetic Field -- Summary of Chapter -- Exercises -- 4 Quantization of Free Fields -- 4.1 Scalar Fields -- 4.1.1 Real Scalar Fields. Fock space -- 4.1.2 Complex Scalar field -- Antiparticles -- 4.2 Spin 1/2 Fields -- 4.2.1 Dirac Field -- 4.2.2 Massless Weyl field
4.2.3 C, P, T -- 4.3 Electromagnetic Field -- 4.3.1 Quantization in the Radiation Gauge -- 4.3.2 Covariant Quantization -- Summary of Chapter -- Exercises -- 5 Perturbation Theory and Feynman Diagrams -- 5.1 The S-matrix -- 5.2 The LSZ Reduction Formula -- 5.3 Setting up the Perturbative Expansion -- 5.4 The Feynman Propagator -- 5.5 Wick's Theorem and Feynman Diagrams -- 5.5.1 A Few very Explicit Computations -- 5.5.2 Loops and Divergences -- 5.5.3 Summary of Feynman Rules for a Scalar Field -- 5.5.4 Feynman Rules for Fermions and Gauge Bosons -- 5.6 Renormalization -- 5.7 Vacuum Energy and the Cosmological Constant Problem -- 5.8 The Modern Point of view on Renormalizability -- 5.9 The Running of Coupling Constants -- Summary of Chapter -- Further Reading -- Exercises -- 6 Cross-sections and Decay Rates -- 6.1 Relativistic and Non-relativistic Normalizations -- 6.2 Decay rates -- 6.3 Cross-sections -- 6.4 Two-body Final States -- 6.5 Resonances and the Breit-Wigner Distribution -- 6.6 Born Approximation and Non-relativistic Scattering -- 6.7 Solved Problems -- Three-body kinematics and Phase Space -- Inelastic Scattering of Non-relativistic Electrons on Atoms -- Summary of Chapter -- Further Reading -- Exercises -- 7 Quantum Electrodynamics -- 7.1 The QED Lagrangian -- 7.2 One-loop Divergences -- 7.3 Solved Problems -- e+ e- -> γ -> μ+ μ- -- Electromagnetic form Factors -- Summary of Chapter -- Further Reading -- Exercises -- 8 The Low-energy Limit of the Electroweak Theory -- 8.1 A Four-Fermion Model -- 8.2 Charged and Neutral Currents in the Standard Model -- 8.3 Solved Problems: Weak Decays -- μ- -> e-ve vμ -- Isospin and Flavor SU(3) -- K0 -> π- l+ vl -- Summary of Chapter -- Further Reading -- Exercises -- 9 Path Integral Quantization -- 9.1 Path Integral Formulation of Quantum Mechanics -- 9.2 Path Integral Quantization of Scalar Fields
9.3 Perturbative Evaluation of the path Integral -- 9.4 Euclidean Formulation -- 9.5 QFT and Critical Phenomena -- 9.6 QFT at Finite Temperature -- 9.7 Solved Problems -- Instantons and Tunneling -- Summary of Chapter -- Further Reading -- 10 Non-Abelian Gauge Theories -- 10.1 Non-Abelian Gauge Transformations -- 10.2 Yang-Mills Theory -- 10.3 QCD -- 10.4 Fields in the Adjoint Representation -- Summary of Chapter -- Further Reading -- 11 Spontaneous Symmetry Breaking -- 11.1 Degenerate Vacua in QM and QFT -- 11.2 SSB of Global Symmetries and Goldstone Bosons -- 11.3 Abelian Gauge Theories: SSB and Superconductivity -- 11.4 Non-abelian Gauge Theories: the Masses of W± and Z0 -- Summary of Chapter -- Further Reading -- 12 Solutions to Exercises -- 12.1 Chapter 1 -- 12.2 Chapter 2 -- 12.3 Chapter 3 -- 12.4 Chapter 4 -- 12.5 Chapter 5 -- 12.6 Chapter 6 -- 12.7 Chapter 7 -- 12.8 Chapter 8 -- Bibliography -- Index
Quantum field theory has undergone extraordinary developments in the last few decades and permeates many branches of modern research such as particle physics, cosmology, condensed matter, statistical mechanics and critical phenomena. This book introduces the reader to the modern developments in a manner which assumes no previous knowledge of quantum field theory, and makes it readily accessible from the advanced undergraduate level upwards
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Maggiore, Michele A Modern Introduction to Quantum Field Theory Oxford : Oxford University Press, Incorporated,c2005 9780198520740
Subject Quantum field theory.;Mathematical physics
Electronic books
Record:   Prev Next