Record:   Prev Next
Author Zagoskin, A. M
Title Quantum Engineering : Theory and Design of Quantum Coherent Structures
Imprint Cambridge : Cambridge University Press, 2011
©2011
book jacket
Descript 1 online resource (346 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Quantum mechanics for quantum engineers -- 1.1 Basic notions of quantum mechanics -- 1.1.1 Quantum axioms -- 1.1.2 Quantum--classical boundary: the Schrödinger's cat paradox -- 1.2 Density matrix formalism -- 1.2.1 Justification and properties -- 1.2.2 Averages, probabilities and coherences -- 1.2.3 Entanglement -- 1.2.4 Liouville--von Neumann equation -- 1.2.5 Wigner function -- 1.2.6 Perturbation theory for density matrix. Linear response theory -- 1.2.7 Fluctuation-dissipation theorem -- 1.3 Evolution of density matrix in open systems -- 1.3.1 Getting rid of the environment -- 1.3.2 Master equation for the density matrix -- Lindblad operators -- 1.3.3 An example: a non-unitary evolution of a two-level system. Dephasing and relaxation -- 1.3.4 *Non-unitary vs. unitary evolution -- 1.4 Quantum dynamics of a two-level system -- 1.4.1 Bloch vector and Bloch sphere -- 1.4.2 Bloch equations and quantum beats -- 1.4.3 Rabi oscillations -- 1.4.4 *Rabi oscillations in the presence of dissipation -- 1.5 Slow evolution of a quantum system -- 1.5.1 Adiabatic theorem -- 1.5.2 Landau--Zener--Stückelberg effect -- 2 Superconducting quantum circuits -- 2.1 Josephson effect -- 2.1.1 Superconductivity: A crash course -- 2.1.2 Weak superconductivity -- 2.1.3 rf SQUID -- 2.1.4 dc SQUID -- 2.1.5 Current-biased Josephson junction -- 2.2 Quantum effects in Josephson junctions. Phase and flux qubits -- 2.2.1 Number and phase as quantum observables -- 2.2.2 Phase qubit: Current-biased Josephson junction in quantum limit -- 2.2.3 rf SQUID flux qubit -- 2.3 Circuit analysis for quantum coherent structures. More flux qubits -- 2.3.1 Lagrangian formalism for non-dissipative circuits -- 2.3.2 Dissipative elements in a circuit -- Lagrange approach -- 2.3.3 Hamilton and Routh functions for a circuit
2.3.4 Second quantization formalism for circuits -- 2.3.5 Persistent current flux qubit -- 2.4 Charge qubits -- 2.4.1 Charge regime: Normal conductors -- 2.4.2 Charge regime: Superconductors -- 2.4.3 Charge qubit -- 2.4.4 Quantronium -- 2.4.5 *Charge and quasicharge. Bloch oscillations -- 2.5 Quantum inductance and quantum capacitance -- 2.5.1 Quantum inductance -- 2.5.2 Quantum capacitance -- 2.6 *Superconductivity effects in normal conductors -- 2.6.1 *Andreev reflection and proximity effect -- 2.6.2 *Andreev levels and Josephson current in SNS junctions -- 3 Quantum devices based on two-dimensional electron gas -- 3.1 Quantum transport in two dimensions -- 3.1.1 Formation of two-dimensional electron gas inheterojunction devices -- 3.1.2 Conductance quantization in a point contact -- 3.1.3 Quantum transport from scattering matrix: Landauer formalism. Landauer formula and its modifications -- 3.1.4 Quantum point contact as a quantum detector -- 3.1.5 *Back-action dephasing by a QPC detector: a more rigorous approach -- 3.2 2DEG quantum dots -- 3.2.1 Linear and nonlinear transport through a double quantum dot -- 3.2.2 Coherent manipulation of charge in 2DEG quantum dots -- 3.2.3 Coherent manipulation of spin in 2DEG quantum dots -- 3.3 Loops, interferometers and hybrid structures -- 3.3.1 2DEG loops: Aharonov--Bohm effect -- 3.3.2 *Hybrid 2DEG-superconducting structures.Landauer--Lambert formalism -- 4 Superconducting multiqubit devices -- 4.1 Physical implementations of qubit coupling -- 4.1.1 Coupling by linear passive elements. Capacitive coupling -- 4.1.2 Passive inductive coupling of flux qubits -- 4.1.3 Coupling by nonlinear passive elements. Tunable coupling -- 4.1.4 Quantum buses -- 4.1.5 Active coupling -- 4.2 Quantum optics: a crash course -- 4.2.1 Fock space and Fock states -- 4.2.2 Jaynes--Cummings model
4.2.3 Quantum Rabi oscillations. Vacuum Rabi oscillations -- 4.2.4 Dispersive regime. Schrieffer--Wolff transformation -- 4.3 Circuit quantum electrodynamics -- 4.3.1 Circuit implementation of cavity QED -- 4.3.2 Qubits coupled through a resonator -- 4.4 *Phase space formalism of quantum optics -- 4.4.1 *Coherent states -- 4.4.2 *Physical significance of coherent states -- 4.4.3 *Wigner function for the oscillator states -- 4.4.4 *Squeezed states -- 4.4.5 *Equations of motion for Wigner function -- 4.4.6 *Parametric generation of squeezed states -- 5 Noise and decoherence -- 5.1 Quantum noise -- 5.1.1 Autocorrelation function and spectral density -- 5.1.2 Physical meaning of quantum spectral density of fluctuations -- 5.1.3 *Quantum regression theorem -- 5.2 Noise sources in solid-state systems -- 5.2.1 Thermal noise -- 5.2.2 Classical shot noise -- 5.2.3 Quantum shot noise -- 5.2.4 1/f-noise -- 5.3 Noise and decoherence -- 5.3.1 External noise and decoherence rates -- 5.3.2 Bosonic bath model of the environment -- 5.3.3 Spin bath -- 5.3.4 Decoherence from 1/f-noise -- 5.4 Decoherence suppression -- 5.4.1 Dynamic suppression of decoherence -- 5.4.2 Decoherence suppression by design: the optimal point -- 5.4.3 Transmon -- 5.4.4 Decoherence suppression by detuning -- 5.5 Measurements and decoherence -- 5.5.1 Quantum description of measurement -- 5.5.2 Quantum nondemolition (QND) measurement -- 5.5.3 Weak continuous measurement -- 5.5.4 Detector back-action and measurement rate -- 5.5.5 *Rabi spectroscopy -- 5.5.6 *Quantum Zeno effect -- 6 Applications and speculations -- 6.1 Quantum metamaterials -- 6.1.1 A qubit in a transmission line -- 6.1.2 Classical wave propagation along a multiqubit chain in a transmission line -- 6.1.3 Ambidextrous metamaterials -- 6.2 Quantum slide rules -- 6.2.1 Adiabatic quantum computing -- 6.2.2 Adiabatic algorithms
6.3 Quantum engines, fridges and demons -- 6.3.1 Quantum thermodynamic cycles -- 6.3.2 Sisyphus effect: cooling and amplification in qubit devices -- 6.3.3 *Quantum Maxwell's demon -- Appendix: Quantum gates -- References -- Index
A self-contained presentation of the theoretical methods and experimental results in quantum engineering for graduate students
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Zagoskin, A. M. Quantum Engineering : Theory and Design of Quantum Coherent Structures Cambridge : Cambridge University Press,c2011 9780521113694
Subject Quantum theory.;Engineering mathematics
Electronic books
Record:   Prev Next