LEADER 00000nam a22004693i 4500
001 EBC1681771
003 MiAaPQ
005 20200713055303.0
006 m o d |
007 cr cnu||||||||
008 200713s2007 xx o ||||0 eng d
020 9789812790767|q(electronic bk.)
020 |z9789812706218
035 (MiAaPQ)EBC1681771
035 (Au-PeEL)EBL1681771
035 (CaPaEBR)ebr10255670
035 (CaONFJC)MIL193838
035 (OCoLC)815752925
040 MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ
050 4 TN705.S15 2008
082 0 669.1
100 1 Sahai, Yogeshwar
245 10 Tundish Technology For Clean Steel Production
264 1 Singapore :|bWorld Scientific Publishing Company,|c2007
264 4 |c©2007
300 1 online resource (329 pages)
336 text|btxt|2rdacontent
337 computer|bc|2rdamedia
338 online resource|bcr|2rdacarrier
505 0 Intro -- Contents -- Preface -- 1. Introduction -- 1.1
Ingot and Continuous Casting of Steel -- 1.2 The Role of
Tundish in the Continuous Casting Process -- 1.3 The Need
for Clean Steel -- 1.4 Concluding Remarks -- References --
2. Non-Metallic Inclusions -- 2.1 Introduction -- 2.2
Origin of Oxide Inclusions -- 2.2.1 Exogenous inclusions -
- 2.2.1.1 Definition of macro inclusions -- 2.2.1.2
Origins of exogenous macro inclusions -- 2.2.1.3
Constitution of exogenous inclusions -- 2.2.2 Indigenous
inclusions -- 2.2.2.1 Thermodynamics of deoxidation
reaction -- 2.2.2.2 Sequence of oxide inclusion formation
-- 2.2.2.3 Primary, secondary, and tertiary inclusions --
2.2.2.4 Oxygen content of deoxidized steel -- 2.2.2.5 The
deoxidation process -- 2.3 Sizes and Shapes of Inclusions
-- 2.3.1 Size distribution of inclusions -- 2.3.2 The
shape of inclusions -- 2.3.2.1 Relative deformability of
inclusions during hot rolling -- 2.3.2.2 Classification of
inclusions by shape after deformation of steel matrix --
2.4 Influence of Inclusions on Steel Properties -- 2.5
Measures to Reduce Inclusions -- 2.5.1 Maximizing
inclusion removal in ladle refining -- 2.5.2 Minimizing
pickup of macro inclusions -- 2.5.3 Removal of macro
inclusions during melt transport in tundish -- 2.5.3.1 The
dominant mechanism of inclusion removal -- 2.5.3.2
Characteristics and modeling of the formation and removal
of Al2O3 clusters -- 2.5.3.3 Influence of flow and
temperature of melt on the removal of alumina clusters --
2.5.4 Tundish design and inclusion removal -- 2.5.4.1
Design criteria for inclusion removal -- 2.5.4.2 Effect of
dimensions and profile of the tundish on inclusion removal
-- 2.5.5 Remarks on modeling -- References -- 3. Review of
Fluid Flow and Turbulence -- 3.1 Introduction -- 3.2 Fluid
Flow Regimes -- 3.3 Newton's Law of Viscosity -- 3.3.1
Viscosity
505 8 3.4 Dimensionality of Flow -- 3.5 Modes of Momentum
Transport -- 3.5.1 Viscous or diffusive momentum transport
-- 3.5.2 Convective momentum transport -- 3.6 Equations of
Continuity and Motion -- 3.7 Stokes' Law -- 3.8 Turbulent
Flow -- 3.8.1 The eddy size spectrum -- 3.8.2 Prandtl's
mixing length and effective viscosity -- 3.8.3 Turbulent
shear stress -- 3.9 Turbulent Equations of Continuity and
Motion -- 3.10 Heat and Mass Transfer -- 3.11 Turbulence
Models -- 3.12 Concluding Remarks -- References and
Further Reading -- 4. Fluid Flow Characterization -- 4.1
Introduction -- 4.2 Stimulus-Response Techniques -- 4.2.1
Step input and F-curve -- 4.2.2 Pulse input and C-curve --
4.3 Characterization of Flow Systems -- 4.3.1 Plug flow --
4.3.2 Well-mixed flow -- 4.4 Characterization of Actual
Systems -- 4.4.1 Longitudinal dispersion model -- 4.4.1.1
Step input and F-curve -- 4.4.1.2 Pulse input and C-curve
-- 4.4.1.3 Closed vessel -- 4.4.1.4 Open vessel -- 4.4.1.5
Dispersion model for a small extent of dispersion (for a
closed system) -- 4.4.1.6 Mean and variance of the
residence time distribution -- 4.4.2 Tanks-in-series model
-- 4.4.3 Combined or mixed models -- 4.4.3.1 Active region
-- 4.4.3.2 Dead region -- 4.4.3.3 Application of a
combined model to melt flow in tundish -- 4.4.3.4 An
example of tundish melt flow characterization -- 4.5
Concluding Remarks -- References -- 5. Modeling of Melt
Flow -- 5.1 Introduction -- 5.2 Physical Modeling -- 5.2.1
States of similarity -- 5.2.1.1 Geometric similarity --
5.2.1.2 Kinematic similarity -- 5.2.1.3 Dynamic similarity
-- 5.2.1.4 Thermal similarity -- 5.2.2 Similarity criteria
-- 5.2.3 Isothermal system -- 5.2.4 Non-isothermal system
-- 5.2.5 Inclusion removal modeling -- 5.2.5.1 Inclusion
flotation -- 5.2.6 Water modeling procedure -- 5.2.7
Effect of tracer density on melt flow characterization
505 8 5.3 Mathematical Modeling -- 5.3.1 Turbulent flow field
and heat transfer -- 5.3.2 Boundary conditions and
assumptions -- 5.3.3 Numerical solution procedure -- 5.3.4
Tracer dispersion -- 5.3.5 Inclusion transport -- 5.3.6
Commercial software codes -- 5.4 Case Studies -- 5.4.1
Case study # 1 -- 5.4.2 Case study # 2 -- 5.4.3 Case study
# 3 -- 5.5 Concluding Remarks -- References -- 6. Tundish
Operation -- 6.1 Introduction -- 6.2 Reoxidation During
Ladle to Tundish Melt Transfer -- 6.3 Slag Entrainment and
Sensing Technologies -- 6.4 The Effect of Tundish Size --
6.5 The Effect of Flow Control Devices -- 6.5.1 Large
tundish without flow modifiers -- 6.6 Gas Injection in
Tundishes -- 6.7 Role of Tundish Flux -- 6.7.1 Basicity of
slag -- 6.7.2 Alumina dissolution rate -- 6.7.3 Slag
viscosity -- 6.7.4 Slag composition -- 6.7.5 Metallic Al
in tundish fluxes -- 6.7.6 Tundish operation without
tundish fluxes -- 6.8 Calcium Addition -- 6.9 Sequential
Casting of Different Grades -- 6.9.1 Use of grade
separators and strand links -- 6.9.2 Casting of different
grades using the same tundish -- 6.10 Tundish Refractory -
- 6.11 Recycling of a Hot Tundish -- 6.11.1 Slag
crystallization and build-up -- 6.11.2 Temperature drop of
tundish -- 6.11.3 Number of heats and refractory cost --
6.12 Starting and Ending a Sequence -- 6.12.1 Starting a
sequence -- 6.12.2 Ending a sequence -- 6.13 Tundish to
Mold Melt Delivery and Nozzle Clogging -- 6.13.1 Melt
delivery system from the tundish to the mold -- 6.13.2
Clogging of the tundish nozzle, slide plate hole, and the
SEN -- 6.14 Concluding Remarks -- References -- 7. Melt
Temperature Control -- 7.1 Introduction -- 7.2 Melt
Temperature Variation -- 7.3 Temperature Measurement
Devices -- 7.4 The Need for Superheat Control -- 7.5
External Heating (Plasma Systems) -- 7.5.1 DC arc plasma
system -- 7.5.2 Mobile plasma arc system
505 8 7.5.2.1 Stable and mobile arc -- 7.5.2.2 Mobile plasma arc
generation -- 7.5.3 AC arc plasma system -- 7.5.3.1 Arc
characteristics -- 7.5.3.2 Effect of gas composition and
flow rate -- 7.5.3.3 Cold- and hot-run trials -- 7.5.3.4
Heating efficiency and temperature control -- 7.6 External
Heating (Induction Systems) -- 7.6.1 Heating efficiency
and temperature control -- 7.7 External Cooling -- 7.8
Concluding Remarks -- References -- 8. Recent, Emerging,
and Novel Technologies -- 8.1 Introduction -- 8.2 Advances
of the H-Shaped Tundish -- 8.3 The Centrifugal Flow
Tundish (CF Tundish) -- 8.4 Argon Bubbling in a Tundish --
8.5 Electromagnetic Control of Melt Flow -- 8.6 Tundish
Heaters -- 8.7 Hot Cycling with a Single Tundish Reheated
Under Inert Atmosphere -- 8.8 Improved Argon Shrouding of
the Melt Stream from the Ladle to the Tundish -- 8.9
Concluding Remarks -- References -- Subject Index
520 Key Features:Comprehensive presentation of all topics
related to tundish technology, including the fundamental
aspects and theoryWritten by internationally known experts
in the fieldIncludes discussion of future and emerging
technologiesSuitable for students, yet a good resource for
researchers and practicing engineersA necessary reference
book for people interested in clean steel production
588 Description based on publisher supplied metadata and other
sources
590 Electronic reproduction. Ann Arbor, Michigan : ProQuest
Ebook Central, 2020. Available via World Wide Web. Access
may be limited to ProQuest Ebook Central affiliated
libraries
650 0 Steel -- Metallurgy.;Steel founding.;Continuous
casting.;Steel -- Inclusions
655 4 Electronic books
700 1 Emi, Toshihiko
776 08 |iPrint version:|aSahai, Yogeshwar|tTundish Technology For
Clean Steel Production|dSingapore : World Scientific
Publishing Company,c2007|z9789812706218
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
detail.action?docID=1681771|zClick to View