LEADER 00000nam a22004693i 4500 
001    EBC1681771 
003    MiAaPQ 
005    20200713055303.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2007    xx      o     ||||0 eng d 
020    9789812790767|q(electronic bk.) 
020    |z9789812706218 
035    (MiAaPQ)EBC1681771 
035    (Au-PeEL)EBL1681771 
035    (CaPaEBR)ebr10255670 
035    (CaONFJC)MIL193838 
035    (OCoLC)815752925 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TN705.S15 2008 
082 0  669.1 
100 1  Sahai, Yogeshwar 
245 10 Tundish Technology For Clean Steel Production 
264  1 Singapore :|bWorld Scientific Publishing Company,|c2007 
264  4 |c©2007 
300    1 online resource (329 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Contents -- Preface -- 1. Introduction -- 1.1 
       Ingot and Continuous Casting of Steel -- 1.2 The Role of 
       Tundish in the Continuous Casting Process -- 1.3 The Need 
       for Clean Steel -- 1.4 Concluding Remarks -- References --
       2. Non-Metallic Inclusions -- 2.1 Introduction -- 2.2 
       Origin of Oxide Inclusions -- 2.2.1 Exogenous inclusions -
       - 2.2.1.1 Definition of macro inclusions -- 2.2.1.2 
       Origins of exogenous macro inclusions -- 2.2.1.3 
       Constitution of exogenous inclusions -- 2.2.2 Indigenous 
       inclusions -- 2.2.2.1 Thermodynamics of deoxidation 
       reaction -- 2.2.2.2 Sequence of oxide inclusion formation 
       -- 2.2.2.3 Primary, secondary, and tertiary inclusions -- 
       2.2.2.4 Oxygen content of deoxidized steel -- 2.2.2.5 The 
       deoxidation process -- 2.3 Sizes and Shapes of Inclusions 
       -- 2.3.1 Size distribution of inclusions -- 2.3.2 The 
       shape of inclusions -- 2.3.2.1 Relative deformability of 
       inclusions during hot rolling -- 2.3.2.2 Classification of
       inclusions by shape after deformation of steel matrix -- 
       2.4 Influence of Inclusions on Steel Properties -- 2.5 
       Measures to Reduce Inclusions -- 2.5.1 Maximizing 
       inclusion removal in ladle refining -- 2.5.2 Minimizing 
       pickup of macro inclusions -- 2.5.3 Removal of macro 
       inclusions during melt transport in tundish -- 2.5.3.1 The
       dominant mechanism of inclusion removal -- 2.5.3.2 
       Characteristics and modeling of the formation and removal 
       of Al2O3 clusters -- 2.5.3.3 Influence of flow and 
       temperature of melt on the removal of alumina clusters -- 
       2.5.4 Tundish design and inclusion removal -- 2.5.4.1 
       Design criteria for inclusion removal -- 2.5.4.2 Effect of
       dimensions and profile of the tundish on inclusion removal
       -- 2.5.5 Remarks on modeling -- References -- 3. Review of
       Fluid Flow and Turbulence -- 3.1 Introduction -- 3.2 Fluid
       Flow Regimes -- 3.3 Newton's Law of Viscosity -- 3.3.1 
       Viscosity 
505 8  3.4 Dimensionality of Flow -- 3.5 Modes of Momentum 
       Transport -- 3.5.1 Viscous or diffusive momentum transport
       -- 3.5.2 Convective momentum transport -- 3.6 Equations of
       Continuity and Motion -- 3.7 Stokes' Law -- 3.8 Turbulent 
       Flow -- 3.8.1 The eddy size spectrum -- 3.8.2 Prandtl's 
       mixing length and effective viscosity -- 3.8.3 Turbulent 
       shear stress -- 3.9 Turbulent Equations of Continuity and 
       Motion -- 3.10 Heat and Mass Transfer -- 3.11 Turbulence 
       Models -- 3.12 Concluding Remarks -- References and 
       Further Reading -- 4. Fluid Flow Characterization -- 4.1 
       Introduction -- 4.2 Stimulus-Response Techniques -- 4.2.1 
       Step input and F-curve -- 4.2.2 Pulse input and C-curve --
       4.3 Characterization of Flow Systems -- 4.3.1 Plug flow --
       4.3.2 Well-mixed flow -- 4.4 Characterization of Actual 
       Systems -- 4.4.1 Longitudinal dispersion model -- 4.4.1.1 
       Step input and F-curve -- 4.4.1.2 Pulse input and C-curve 
       -- 4.4.1.3 Closed vessel -- 4.4.1.4 Open vessel -- 4.4.1.5
       Dispersion model for a small extent of dispersion (for a 
       closed system) -- 4.4.1.6 Mean and variance of the 
       residence time distribution -- 4.4.2 Tanks-in-series model
       -- 4.4.3 Combined or mixed models -- 4.4.3.1 Active region
       -- 4.4.3.2 Dead region -- 4.4.3.3 Application of a 
       combined model to melt flow in tundish -- 4.4.3.4 An 
       example of tundish melt flow characterization -- 4.5 
       Concluding Remarks -- References -- 5. Modeling of Melt 
       Flow -- 5.1 Introduction -- 5.2 Physical Modeling -- 5.2.1
       States of similarity -- 5.2.1.1 Geometric similarity -- 
       5.2.1.2 Kinematic similarity -- 5.2.1.3 Dynamic similarity
       -- 5.2.1.4 Thermal similarity -- 5.2.2 Similarity criteria
       -- 5.2.3 Isothermal system -- 5.2.4 Non-isothermal system 
       -- 5.2.5 Inclusion removal modeling -- 5.2.5.1 Inclusion 
       flotation -- 5.2.6 Water modeling procedure -- 5.2.7 
       Effect of tracer density on melt flow characterization 
505 8  5.3 Mathematical Modeling -- 5.3.1 Turbulent flow field 
       and heat transfer -- 5.3.2 Boundary conditions and 
       assumptions -- 5.3.3 Numerical solution procedure -- 5.3.4
       Tracer dispersion -- 5.3.5 Inclusion transport -- 5.3.6 
       Commercial software codes -- 5.4 Case Studies -- 5.4.1 
       Case study # 1 -- 5.4.2 Case study # 2 -- 5.4.3 Case study
       # 3 -- 5.5 Concluding Remarks -- References -- 6. Tundish 
       Operation -- 6.1 Introduction -- 6.2 Reoxidation During 
       Ladle to Tundish Melt Transfer -- 6.3 Slag Entrainment and
       Sensing Technologies -- 6.4 The Effect of Tundish Size -- 
       6.5 The Effect of Flow Control Devices -- 6.5.1 Large 
       tundish without flow modifiers -- 6.6 Gas Injection in 
       Tundishes -- 6.7 Role of Tundish Flux -- 6.7.1 Basicity of
       slag -- 6.7.2 Alumina dissolution rate -- 6.7.3 Slag 
       viscosity -- 6.7.4 Slag composition -- 6.7.5 Metallic Al 
       in tundish fluxes -- 6.7.6 Tundish operation without 
       tundish fluxes -- 6.8 Calcium Addition -- 6.9 Sequential 
       Casting of Different Grades -- 6.9.1 Use of grade 
       separators and strand links -- 6.9.2 Casting of different 
       grades using the same tundish -- 6.10 Tundish Refractory -
       - 6.11 Recycling of a Hot Tundish -- 6.11.1 Slag 
       crystallization and build-up -- 6.11.2 Temperature drop of
       tundish -- 6.11.3 Number of heats and refractory cost -- 
       6.12 Starting and Ending a Sequence -- 6.12.1 Starting a 
       sequence -- 6.12.2 Ending a sequence -- 6.13 Tundish to 
       Mold Melt Delivery and Nozzle Clogging -- 6.13.1 Melt 
       delivery system from the tundish to the mold -- 6.13.2 
       Clogging of the tundish nozzle, slide plate hole, and the 
       SEN -- 6.14 Concluding Remarks -- References -- 7. Melt 
       Temperature Control -- 7.1 Introduction -- 7.2 Melt 
       Temperature Variation -- 7.3 Temperature Measurement 
       Devices -- 7.4 The Need for Superheat Control -- 7.5 
       External Heating (Plasma Systems) -- 7.5.1 DC arc plasma 
       system -- 7.5.2 Mobile plasma arc system 
505 8  7.5.2.1 Stable and mobile arc -- 7.5.2.2 Mobile plasma arc
       generation -- 7.5.3 AC arc plasma system -- 7.5.3.1 Arc 
       characteristics -- 7.5.3.2 Effect of gas composition and 
       flow rate -- 7.5.3.3 Cold- and hot-run trials -- 7.5.3.4 
       Heating efficiency and temperature control -- 7.6 External
       Heating (Induction Systems) -- 7.6.1 Heating efficiency 
       and temperature control -- 7.7 External Cooling -- 7.8 
       Concluding Remarks -- References -- 8. Recent, Emerging, 
       and Novel Technologies -- 8.1 Introduction -- 8.2 Advances
       of the H-Shaped Tundish -- 8.3 The Centrifugal Flow 
       Tundish (CF Tundish) -- 8.4 Argon Bubbling in a Tundish --
       8.5 Electromagnetic Control of Melt Flow -- 8.6 Tundish 
       Heaters -- 8.7 Hot Cycling with a Single Tundish Reheated 
       Under Inert Atmosphere -- 8.8 Improved Argon Shrouding of 
       the Melt Stream from the Ladle to the Tundish -- 8.9 
       Concluding Remarks -- References -- Subject Index 
520    Key Features:Comprehensive presentation of all topics 
       related to tundish technology, including the fundamental 
       aspects and theoryWritten by internationally known experts
       in the fieldIncludes discussion of future and emerging 
       technologiesSuitable for students, yet a good resource for
       researchers and practicing engineersA necessary reference 
       book for people interested in clean steel production 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Steel -- Metallurgy.;Steel founding.;Continuous 
       casting.;Steel -- Inclusions 
655  4 Electronic books 
700 1  Emi, Toshihiko 
776 08 |iPrint version:|aSahai, Yogeshwar|tTundish Technology For
       Clean Steel Production|dSingapore : World Scientific 
       Publishing Company,c2007|z9789812706218 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1681771|zClick to View