Record:   Prev Next
Author Tovar, Henry
Title Superconducting Magnets and Superconductivity : Research, Technology and Applications
Imprint Hauppauge : Nova Science Publishers, Incorporated, 2009
©2009
book jacket
Descript 1 online resource (442 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- SUPERCONDUCTING MAGNETS ANDSUPERCONDUCTIVITY: RESEARCH,TECHNOLOGY AND APPLICATIONS -- CONTENTS -- PREFACE -- RESEARCH AND REVIEW STUDIES -- CORRELATION EFFECTS AND SUPERCONDUCTIVITYIN CUPRATES: A CRITICAL ACCOUNT -- Abstract -- 1. Introduction -- 2. Electronic Correlation in Molecules -- 3. Electron Structure of Embedded Transition Metal Ion -- 4. Metal - Metal Interaction and the MV-2 Model -- 5. Mott Problem Involves Three Oxidation States (MV-3) -- 6. Variational Calculations of Electron Structure -- 7. Pair Currents in the Ground State -- 8. Vibronic Wave Functions. Energy Gap -- 9. Phonon Softening -- 10. ARPES -- 11. Discussion and Conclusion -- References -- IMPROVED FLUX PINNING PROPERTIES FOR RE123SUPERCONDUCTORS BY CHEMICAL METHODS -- Abstract -- 1. Introduction -- 2. Dilute Impurity Doping Effects -- 2.1. Dilute Lu-Doping Effect for Y123 Melt-solidified Bulk -- 2.2. Effect of Dilute Impurity Doping to CuO-Chain -- 2.3. Dilute Impurity Doping Effects for Dy123 Melt-Solidified Bulks -- 2.4. Changes in Pinning Effect by Dilute Chemical Doping to DifferentCation Sites -- 3. New Effective Pinning Site: BaTbO3 Precipitates -- 3.1. BaTbO3 Addition -- 3.2. Tb4O7 Addition -- 4. Conclusion -- Acknowledgements -- References -- MECHANICAL CHARACTERIZATIONAT NANOMETRIC SCALE OF CERAMICSUPERCONDUCTOR COMPOSITES -- MECHANICAL CHARACTERIZATIONAT NANOMETRIC SCALE OF CERAMICSUPERCONDUCTOR COMPOSITES -- Abstract -- 1. Introduction -- 1.1. High-Temperature Superconductors (HTSC) -- 1.1.1. Solidification and Microstructure of YBCO Bulk Materials -- a. Top-Seeded Melt-Growth (TSMG) Technique -- b. Bridgman Technique -- 1.1.2. Oxygenation Process -- a) Mechanical stress -- b) Propagation of cracks during oxygenation -- 1.1.3. Applications -- 1.2. Indentation Testing Technique -- 1.2.1. Testing Equipment (Instrumentation)
1.2.2. Nanoindenter's Tips -- 1.2.3. Good Experimental Practice -- a) Choosing an appropriate indenter -- b) Environmental control -- c) Surface preparation -- d) Testing procedure -- e) Detecting the surface -- 1.2.4. Experimental Techniques -- a. Hardness and elastic modulus measurements -- b. Spherical indentation (Determination of the stress-strain curves) -- c. Fracture toughness measurement -- 1.2.5. The Effective Indenter Shape -- 1.2.6. Errors due to Pile-up and Sinking-in -- 1.2.7. Indentation Size Effect, ISE -- a. Meyer's law -- b. Hays-Kendall approach -- c. Elastic recovery model or Elastic/Plastic deformation model -- d. Proportional specimen resistance model or PSR model -- e, The modified PSR model -- 2. Mechanical Properties -- 2.1. State of the Art of Mechanical Properties of YBCO Samples -- 2.2. Mechanical Properties of YBCO Samples Textured by Bridgman andTSMG Technique by Nanoindentation -- 2.2.1. Plastic Deformation -- Experimental Conditions -- Experimental Curves -- Characterization Imprints -- Hardness -- Young's Modulus -- c. Indentation Size Effect -- d. Pile-up and Sink-in Problems -- Fracture Toughness -- 2.2.2. Elastic Deformation -- Experimental Conditions -- Determination of the Elasto-plastic Transition -- Stress-Strain Curves -- 2.2.3. Kinetic Study by Nanoindentation Technique of TSMG Samplesalong the c-axis at 450ºC -- Experimental Conditions -- Oxygenation Defects and Macro-microckrackingin Melt-textured YBCO Bulks -- Determination of the Kinetics of Oxygenation by Nanoindentation -- Prediction of the Oxygenation Time in YBCO Bulk Materials -- References -- UNDERSTANDING THE ROLES OF HEAVY IONAND GAMMA-IRRADIATIONS ON THE MAGNETICAND TRANSPORT PROPERTIESOF SUPERCONDUCTORS -- Abstract -- 1. Introduction -- 1.1. Normal State Resistivity of MgB2 Bulk Sample -- 1.2. Enhancing the Critical Current Density in HTSCs
1.3. Effects of Heavy Ion - and γ -Irradiations on Superconductors -- 1.4. Aims of the Article -- 2. Experimental Procedures -- 2.1.1. The MgB2 Polycrystalline Sample -- 2.1.2. The YBa2Cu3O7-δ Crystalline Sample -- 2.1.3. The YBa2Cu3O7-δ Polycrystalline Sample -- 2.1.4. The Mn Doped YBa2Cu3O7-δ Polycrystalline Samples -- 2.1.5. The B Doped YBa2Cu3O7-δ Polycrystalline Samples -- 2.1.6. The Bi1.6Pb0.4Sr2Ca2Cu3O10 Polycrystalline Sample -- 2.1.7. The Tl2Ba2Ca2Cu3O10 Tape -- 2.2. Gamma Irradiation Source -- 2.3. Magnetic Measurements -- 2.4. Voltage-Current Measurements -- 3. Results and Discussion -- 3.1. Normal State Resistivity of the MgB2 Sample -- 3.2. Critical Current Density in the MgB2 Sample -- 3.3. Magnetization of the Pb-Ion Irradiated YBa2Cu3O7-δ Crystal -- 3.4. Critical Current Density in the Mn-Doped YBa2Cu3O7-δ Sample -- 3.5. Magnetization of the B-Doped YBa2Cu3O7-δ Sample -- 3.6. Critical Current Density in the γ-irradiated YBa2Cu3O7-δ Sample -- 3.7. Critical Current Density in the γ-irradiated Tl2Ba2Ca2Cu3O10 Tape -- 3.8. Critical Current Density in the γ-irradiated Bi1.6Pb0.4Sr2Ca2Cu3O10Sample -- 3.9. Mechanisms of γ-Rays in the Grain Boundary Regions -- 4. Conclusion -- Acknowledgment -- References -- ON THE MELT PROCESSING OF BI-2223 HIGH-TCSUPERCONDUCTOR CHALLENGESAND PERSPECTIVES -- Abstract -- 1. Introduction -- 2. The Bi-2223 Phase and the BSCCO System -- 3. Melt Processing of Bi-2223 -- 3.1. The Glass-Ceramic Route -- 3.2. Melt-Processing by Peritectic Decomposition -- 3.2.1. Peritectic Melting -- 3.2.2. Bi-2223 Crystallization from the Peritectic Melt -- 4. Summary -- References -- VORTEX THEORY OF INHOMOGENEOUSSUPERCONDUCTORS -- Abstract -- 1. Introduction -- 2. Vortex Theory for Inhomogeneous Superconductors -- 2.1. Solution of Linearized Ginzburg-Landau Equation -- 2.2. Vortex Solution
2.3. Gibbs Free Energy of Vortex Solution -- 3. Vortex State in a Rectangular Prism -- 3.1. Eigenenergy Spectrum -- 3.2. Vortex Solution and Varying Symmetry -- 3.3. Thermodynamical Analysis -- 3.4. Effect of Artificial Arrayed Pining Centers -- 4. Vortex State in a Superconducting Film -- 4.1. Eigen Problem -- 4.2. Vortex State in a Film -- 4.3. Thermodynamical Properties of the Vortex State in a Film -- 5. Vortex State in a Superlattice -- 5.1. Eigen Problem in a Superlattice -- 5.2. Vortex States in a Superlattice -- 5.3. Vortex Lattice in a Superlattice -- 6. Conclusion -- Acknowledgement -- Appendix -- References -- FABRICATION OF PYROCHLORE-BASED BUFFERLAYERS FOR COATED CONDUCTORS VIA CHEMICALSOLUTION DEPOSITION -- 1. Introduction -- 2. Effects of Annealing Temperature and Seed Layers on the LZOBuffer Layers -- 3. Effects of Film Thickness and Solution Concentration on theLZO Buffer Layers -- 4. The Property of YBCO/CeO2/LZO/NiW Substrates -- 5. YTO/LZO Composite Pyrochlore-Based Buffer Layers Derivedby CSD Method -- 6. Conclusion -- Acknowledgement -- References -- RADIATION SHIELDING SCHEMES AND ADVANCEDFABRICATION TECHNIQUESFOR SUPERCONDUCTING MAGNETS -- Abstract -- I. Introduction -- II. Magnet System Constituents -- II.1. Superconducting Materials -- II.2. Structural Materials -- II.3. Insulating Materials -- II.4. Stabilizing Materials -- III. Radiation Limits -- IV. Radiation Shielding Schemes -- V. Advanced Fabrication of Superconducting Magnet Systems -- V.1. Conventional Coil Fabrication Approaches -- V.2. Innovative Structural Fabrication Approaches -- V.3. Summary -- VI. Conclusion -- Acknowledgements -- References -- THERMAL STABILITY CHARACTERISTICS OF HIGHTEMPERATURE SUPERCONDUCTING COMPOSITES -- Abstract -- 1. Introduction
2. Sub- and Overcritical Static Stable Regimes ofSuperconducting Composites with Different Voltage-CurrentCharacterictics -- 2.1. Static Zero-Dimensional Thermo-electric Model -- 2.2. Static Thermal Runaway Conditions and the Current Sharing Effect onthe Stationary Fully Penetrated Current Regimes -- 2.3. Qualitative Analysis of the Thermal Runaway Conditions -- 2.4. Quantitative Analysis of the Current Instability Conditions at LowOperating Temperature (T0=4.2 K) -- 2.5. Conclusion -- 3. Multi-Stable Static Modes of High TemperatureSuperconducting Composites with Nonlinear Jc(T)-Dependence at Different Operating Regimes -- 3.1. Static Differential Resistivity of a Superconducting Composite withArbitrary Temperature Dependences of Its Properties -- 3.2. Nontrivial Steady Electric and Thermal Regimes of Conduction-CooledAg/Bi2212 Composite -- 3.3. Thermal Runaway Conditions of a Superconducting Composite withMulti-stable Current Modes -- 3.4. Conclusion -- 4. Thermal Runaway Phenomenon in SuperconductingComposites Cooled by Liquid Coolant -- 4.1. Thermo-electric and Cooling Models -- 4.2. Quench Characteristics of Ag/Bi2212 Composite under Nucleate andFilm Boiling Regimes of Coolant -- 4.3. Conclusion -- 5. Quench Conditions under Transient Current Modes -- 5.1. Governing Equations -- 5.2. Stable and Unstable Operating Transient Modes of High TemperatureSuperconducting Composite at Helium Bath Temperature -- 5.3. Size Effect on the Thermo-Electric Mode Formation of High-TcSuperconducting Composite -- 5.4. Formation Peculiarities of the Transient Regimes at IntermediateCoolant Temperatures -- 5.5. Stabilization Role of the Additional Branch of Voltage-CurrentCharacteristic before Thermal Runaway with Respect to ExternalThermal Disturbances -- 5.6. Conclusion -- 6. Resume -- References -- SHORT COMMUNICATION
THERMO-MECHANICAL PUMPS FOR A LARGESUPERCONDUCTING MAGNET IN SPACE OPERATEDBY USE OF SUPERFLUID HELIUM
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Tovar, Henry Superconducting Magnets and Superconductivity: Research, Technology and Applications Hauppauge : Nova Science Publishers, Incorporated,c2009 9781607410171
Subject Superconducting magnet.;Superconductivity
Electronic books
Alt Author Fortier, Jonathon
Record:   Prev Next