Record:   Prev Next
Author Assche, Walter van, 1958- author
Title Orthogonal polynomials and Painleve equations / Walter van Assche, Katholieke Universiteit Leuven, Belgium
Imprint Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2018
book jacket
 Mathematics Library  QA404.5 A87 2018    AVAILABLE    30340200562308
Descript xii, 179 pages ; 23 cm
text txt rdacontent
unmediated n rdamedia
volume nc rdacarrier
Series Australian Mathematical Society lecture series ; 27
Australian Mathematical Society lecture series ; 27
Note Includes bibliographical references and index
Note continued: 4.1.Orthogonal polynomials with exponential weights -- 4.2.Riemann-Hilbert problem for orthogonal polynomials -- 4.3.Proof of the ladder operators -- 4.4.A modification of the Laguerre polynomials -- 4.5.Ladder operators for orthogonal polynomials on the linear lattice -- 4.6.Ladder operators for orthogonal polynomials on a q-lattice -- 5.Other semi-classical orthogonal polynomials -- 5.1.Semi-classical extensions of Laguerre polynomials -- 5.2.Semi-classical extensions of Jacobi polynomials -- 5.3.Semi-classical extensions of Meixner polynomials -- 5.4.Semi-classical extensions of Stieltjes -- Wigert and q-Laguerre polynomials -- 5.5.Semi-classical bi-orthogonal polynomials on the unit circle -- 5.6.Semi-classical extensions of Askey -- Wilson polynomials -- 6.Special solutions of Painleve equations -- 6.1.Rational solutions -- 6.1.1.Painleve II -- 6.1.2.Painleve III -- 6.1.3.Painleve IV -- 6.1.4.Painleve V -- 6.1.5.Painleve VI
Note continued: 6.2.Special function solutions -- 6.2.1.Painleve II -- 6.2.2.Painleve III -- 6.2.3.Painleve IV -- 6.2.4.Painleve V -- 6.2.5.Painleve VI -- 7.Asymptotic behavior of orthogonal polynomials near critical points -- 7.1.Painleve I -- 7.2.Painleve II -- 7.3.Painleve III -- 7.4.Painleve IV -- 7.5.Painleve V -- 7.6.Painleve VI
Subject Orthogonal polynomials
Painleve equations
Differential equations, Nonlinear
Record:   Prev Next