Record:   Prev Next
Title Advances in neural information processing systems 9 [electronic resource]/ edited by Michael C. Mozer, Michael I. Jordan and Thomas Petsche
Imprint Cambridge, Mass. : MIT Press, c1997
Descript 1120 p
Note Bradford Books
Preface -- NIPS Committees -- Reviewers -- I. Cognitive Science -- 1. Text-Based Information Retrieval Using Exponentiated Gradient Descent / Ron Papka, lames P. Callan and Andrew G. Bart -- 2. Why did TD-Gammon Work? / Jordan B. Pollack and Alan D. Blair -- 3. Neural Models for Part-Whole Hierarchies / Maximilian Riesenhuber and Peter Dayan -- II. Neuroscience -- 4. Temporal Low-Order Statistics of Natural Sounds / H. Attias and C. E. Schreiner -- 5. Reconstructing Stimulus Velocity from Neuronal Responses in Area MT / Wyeth Bair, James R. Cavanaugh and J. Anthony Movshon -- 6. 3D Object Recognition: A Model of View-Tuned Neurons / Emanuela Bricolo, Tomaso Poggio and Nikos Logothetis -- 7. A Hierarchical Model of Visual Rivalry / Peter Dayan -- 8. Neural Network Models of Chemotaxis in the Nematode Caenorhabditis Elegans / Thomas C. Ferree, Ben A. Marcotte and Shawn R. Lockery -- 9. Extraction of Temporal Features in the Electrosensory System of Weakly Electric Fish / Fabrizio Gabbiani, Walter Metzner, Ralf Wessel and Christof Koch -- 10. A Neural Model of Visual Contour Integration / Zhaoping Li -- 11. Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings / Laura Martignon, Kathryn Laskey, Gustavo Deco and Eilon Vaadia -- 12. Complex-Cell Responses Derived from Center-Surround Inputs: The Surprising Power of Intradendritic Computation / Bartlett W. Mel, Daniel L. Ruderman and Kevin A. Archie -- 13. Orientation Contrast Sensitivity from Long-range Interactions in Visual Cortex / Klaus R. Pawelzik, Udo Ernst, Fred Wolf and Theo Geisel -- 14. Statistically Efficient Estimations Using Cortical Lateral Connections / Alexandre Pouget and Kechen Zhang -- 15. An Architectural Mechanism for Direction-tuned Cortical Simple Cells: The Role of Mutual Inhibition / Silvio P. Sabatini, Fabio Solari and Giacomo M. Bisio -- 16. Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input / Akaysha C. Tang, Andreas M. Bartels and Terrence J. Sejnowski -- 17. A Model of Recurrent Interactions in Primary Visual Cortex / Emanuel Todorov, Athanassios Siapas and David Somers -- III. Theory -- 18. Neural Learning in Structured Parameter Spaces Natural Riemannian Gradient / Shun-ichi Amari -- 19. For Valid Generalization, the Size of the Weights is More Important than the Size of the Network / Peter L. Bartlett -- 20. Dynamics of Training / Siegfried Bos and Manfred Opper -- 21. Multilayer Neural Networks: One or Two Hidden Layers? / G. brightwell, C. Kenyon and Helene Paugam-Moisy -- 22. Support Vector Regression Machines / Hauris Drucker, Chris J. C. Burges, Linda Kaufman, Alex Smola and Vladimir Vapnik -- 23. Size of Multilayer Networks for Exact Learning: Analytic Approach / Andre Elisseeff and Helene Paugam-Moisy -- 24. The Effect of Correlated Input Data on the Dynamics of Learning / Soren Halkjaer and Ole Winther -- 25. Practical Confidence and Prediction Intervals / Tom Heskes -- 26. Statistical Mechanics of the Mixture of Experts / Kukjin Kang and Jong-Hoon Oh -- 27. MLP Can Probably Generalize Much Better than VC-bounds Indicate / A. Kowalcyk and H. Ferra -- 28. Radial Basis Function Networks and Complexity Regularization in Function Learning / Adarn Krzyzak and Tarnas Linder -- 29. An Apobayesian Relative of Winnow / Nick Littlestone and Chris Mesterhann -- 30. Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons / Wolfgang Maass -- 31. On the Effect of Analog Noise in Discrete-Time Analog Computations / Wolfgang Maass and Pekka Orponen -- 32. A Mean Field Algorithm for Bayes Learning in Large Feed-forward Neural Networks / Manfred Opper and Ole Winther -- 33. Removing Noise in On-Line Search using Adaptive Batch Sizes / Genevieve B. Orr -- 34. Are Hopfield Networks Faster than Conventional Computers? / Ian Parberry and Hung-Li Tseng -- 35. Hebb Learning of Features based on their Information Content / Ferdinand Peper and Hideki Noda -- 36. The Generalisation Cost of RAMnets / Richard Rohwer and Michal Morciniec -- 37. Learning with Noise and Regularizers in Multilayer Neural Networks / David Saad and Sara A. Solla -- 38. A Variational Principle for Model-based Morphing / Lawrence K. Saul and Michael I. Jordan -- 39. Online Learning from Finite Training Sets: An Analytical Case Study / Peter Sollich and David Barber -- 40. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing / Vladimir Vapaik, Steven E. Golowich and Alex Smola -- 41. The Learning Dynamics of a Universal Approximator / Ansgar H. L. West, David Saad and Ian T. Nabney -- 42. Computing with Infinite Networks / Christopher K. I. Wllliams -- 43. Microscopic Equations in Rough Energy Landscape for Neural Networks / K. Y. Michael Wong -- 44. Time Series Prediction using Mixtures of Experts / Assaf J. Zeevi, Ron Meir and Robert J. Adler --
IV. Algorithms and Architecture -- 45. Genetic Algorithms and Explicit Search Statistics / Shumeet Baluja -- 46. Consistent Classification, Firm and Soft / Yoram Baram -- 47. Bayesian Model Comparison by Monte Carlo Chaining / David Barber and Christopher M. Bishop -- 48. Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo / David Barber and Chnstopher K. I. Williams -- 49. Regression with Input-Dependent Noise: A Bayesian Treatment / Christopher M. Bishop and Cazhaow S. Qazaz -- 50. GTM: A Principled Alternative to the Self-Organizing Map / Christopher M. Bishop, Markus Svensen and Christopher K. I. Wllliams -- 51. The CONDENSATION Algorithm Conditional Density Propagation and Applications to Visual Tracking / A. Blake and M. Isard -- 52. Neural Clustering via Concave Minimization / P. S. Bradley, O. L. Mangasarian and W. N. Street -- 53. Improving the Accuracy and Speed of Support Vector Machines / Chris J. C. Burges and B. Scholkopf -- 54. Estimating Equivalent Kernels for Neural Networks: A Data Perturbation Approach / A. Neil Burgess -- 55. Promoting Poor Features to Supervisors: Some Inputs Work Better as Outputs / Rich Caruana and Vlrginia R. de Sa -- 56. Self-Organizing and Adaptive Algorithms for Generalized Eigen-Decomposition / Chanchal Chatterjee and Vwani P. Roychowdhury -- 57. Representation and Induction of Finite State Machines using Time-Delay Neural Networks / Daniel S. Clouse, C. Lee Giles, Bill G. Horne and Garrison W. Cottrell -- 58. Solutions to the XOR Problem / Frans M. Coetzee and Virginia L. Stonick -- 59. Minimizing Statistical Bias with Queries / David A. Cohn -- 60. MIMIC: Finding Optima by Estimating Probability Densities / Jeremy S. de Bonet, Charles L. Isbell, Jr. and Paul Viola -- 61. On a Modification to the Mean Field EM Algorithm in Factorial Learning / A. P. Dunmur and D. M. Titterington -- 62. Softening Discrete Relaxation / Andrew M. Finch, Richard C. Wilson and Edwin R. Hancock -- 63. Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling / Arthur Flexer -- 64. Continuous Sigmoidal Belief Networks Trained using Slice Sampling / Brendan J. Frey -- 65. Adaptively Growing Hierarchical Mixtures of Experts / Juergen Fritsch, Michael Finke and Alex Waibel -- 66. Balancing Between Bagging and Bumping / Tom Heskes -- 67. LSTM can Solve Hard Long Time Lag Problems / Sepp Hochreiter and Jurgen Schmidbuber -- 68. One-unit Learning Rules for Independent Component Analysis / Aapo Hyvarinen and Erkki Oja -- 69. Recursive Algorithms for Approximating Probabilities in Graphical Models / Tommi S. Iaakkola and Michael I. Jordan -- 70. Combinations of Weak Classifiers / Chuanyi Ji and Sheng Ma -- 71. Hidden Markov Decision Trees / Michael I. Jordan, Zoubin Ghahramani and Lawrence K. Saul -- 72. Unification of Information Maximization and Minimization / Ryotaro Kamimura -- 73. Unsupervised Learning by Convex and Conic Coding / D. D. Lee and H. S. Seung -- 74. ARC-LH: A New Adaptive Resampling Algorithm for Improving ANN Classifiers / Friedrich Leisch and Kurt Hornik -- 75. Bayesian Unsupervised Learning of Higher Order Structure / Michael S. Lewicki and Terrence J. Sejnowski -- 76. Source Separation and Density Estimation by Faithful Equivariant SOM / Juan K. Lin, Jack D. Cowan and David G. Grier -- 77. NeuroScale: Novel Topographic Feature Extraction using RBF Networks / David Lowe and Michael E. Tipping -- 78. Decomposition, Ordered Classes and Incomplete Examples in Classification / Mark Mathieson -- 79. Triangulation by Continuous Embedding / Marina Meila and Michael I. Jordan -- 80. Time-Delay Neural Combining Neural Network Regression Estimates with Regularized Linear Weights / Christopher J. Merz and Michael J. Pazzani -- 81. A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data / David J. Miller and Hasan S. Uyar -- 82. Learning Bayesian Belief Networks with Neural Network Estimators / Stefano Monti and Gregory F. Cooper -- 83. Smoothing Regularizers for Projective Basis Function Networks / John E. Moody and Thorsteinn S. Rognvaldsson -- 84. Competition Among Networks Improves Committee Performance / Paul W. Munro and Bambang Parmanto -- 85. Adaptive On-line Learning in Changing Environments / Noboru Murata, Klaus-Robert Muller, Andreas Ziehe and Shun-ichi Amari -- 86. Using Curvature Information for Fast Stochastic Search / Genevieve B. Orr and Todd K. Leen -- 87. Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA / Barak A. Pearlmutter and Lucas C. Parra -- 88. A Convergence Proof for the Soft assign Quadratic Assignment Algorithm / Anand Rangarajan, Alan Yuille, Steven Gold and Eric Mjolsness -- 89. Second-order Learning Algorithm with Squared Penalty Term / Kazumi Saito and Ryohei Nakano -- 90. Monotonicity Hints / Joseph Sill and Yaser S. Abu-Mostafa -- 91. Training Algorithms for Hidden Markov Models using Entropy Based Distance Models / Yoram Singer and Manfred K. Warmuth -- 92. Clustering Sequences with Hidden Markov Models / Padhraic Smyth -- 93. Fast Network Pruning and Feature Extraction by using the Unit-OBS Algorithm / Achim Stahlberger and Martin Riedmiller -- 94. Separating Style and Content / Joshua B. Tenenbaum and William T. Freeman -- 95. Early Brain Damage / Volker Tresp, Ralph Neuneier and Hans Georg Zimmermann --
V. Implementation -- 96. VLSI Implementation of Cortical Visual Motion Detection Using an Analog Neural Computer / Ralph Etienne-Cummings, Jan van der Spiegel, Naomi Takahashi, Alyssa Apsd and Paul Mueller -- 97. A Spike Based Learning Neuron in Analog VLSI / Philipp Hafliger, Misha Mahowald and Lloyd Watts -- 98. An Analog Implementation of the Constant Average Statistics Constraint For Sensor Calibration / John G. Harris and Yu-Ming Chiang -- 99. Analog VLSI Circuits for Attention-Based, Visual Tracking / Timothy Horiuchi, Tonia G. Morris, Christof Koch and Stephen P. DeWeerth -- 100. Dynamically Adaptable CMOS Winner-Take-AII Neural Network / Kunihiko Iizuka, Masayuki Miyamoto and Hirofumi Matsui -- 101. An Adaptive WTA using Floating Gate Technology / W. Fritz Kruger, Paul Hasler, Bradley A. Minch and Christof Koch -- 102. A Micropower Analog VLSI HMM State Decoder for Wordspotting / John Lazzaro, John Wawrzynek and Richard Lippmann -- 103. Bangs, Clicks, Snaps, Thuds and Whacks: An Architecture for Acoustic Transient Processing / Fernando J. Pineda, Gert Cauwenberghs and R. Timothy Edwards -- 104. A Silicon Model of Amplitude Modulation Detection in the Auditory Brainstem / Andre van Schaik, Eric Fragniere and Eric Vittoz -- VI. Speech -- 105. Handwriting and Signal Processing Dynamic Features for Visual Speechreading: A Systematic Comparison / Michael S. Gray, Javier R. Movellan and Terrence J. Sejnowski -- 106. Blind Separation of Delayed and Convolved Sources / Te-Won Lee, Anthony J. Bell and Russell H. Lambert -- 107. A Constructive RBF Network for Writer Adaptation / John C. Platt and Nada P. Matic -- 108. A New Approach to Hybrid HMM/ANN Speech Recognition using Mutual Information Neural Networks / G. Rigoll and C. Neukirchen -- 109. Neural Network Modeling of Speech and Music Signals / Alex Robel -- 110. A Constructive Learning Algorithm for Discriminant Tangent Models / Diego Sona, Alessandro Sperduti and Antonina Starita -- 111. Dual Kalman Filtering Methods for Nonlinear Prediction, Smoothing and Estimation / Eric A. Wan and Alex T. Nelson -- 112. Ensemble Methods for Phoneme Classification / Steve Waterhouse and Galy Cook -- 113. Effective Training of a Neural Network Character Classifier for Word Recognition / Larry Yaeger, Richard Lyon and Brandyn Webb -- VII. Visual Processing -- 114. Viewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks / Marian Stewart Bartlett and Terrence J. Sejnowski -- 115. Learning Temporally Persistent Hierarchical Representations / Suzanna Becker -- 116. Edges are the "Independent Components" of Natural Scenes / Anthony J. Bell and Terrence J. Sejnowski -- 117. Compositionality, MDL Priors, and Object Recognition / Elie Bienenstock, Stuart Geman and Daniel Potter -- 118. Learning Appearance Based Models: Mixtures of Second Moment Experts / Christoph Bregler and Jitendra Malik -- 119. Spatial Decorrelation in Orientation Tuned Cortical Cells / Alexander Dimitrov and Jack D. Cowan -- 120. Spatiotemporal Coupling and Scaling of Natural Images and Human Visual Sensitivities / Dawei W. Dong -- 121. Selective Integration: A Model for Disparity Estimation / Michael S. Gray, Alexandre Pouget, Richard S. Zemel, Steven J. Nowlan and Terrence J. Sejnowski -- 122. ARTEX: A Self-organizing Architecture for Classifying Image Regions / Stephen Grossberg and James R. Wllliamson -- 123. Contour Organisation with the EM Algorithm / J. A. F. Leite and Edwin R. Hancock -- 124. Visual Cortex Circuitry and Orientation Tuning / Trevor Mundel, Alexander Dimitrov and Jack D. Cowan -- 125. Representing Face Images for Emotion Classification / Curtis Padgett and Garrison W. Cottrell -- 126. Rapid Visual Processing using Spike Asynchrony / Simon J. Thorpe and Jacques Gautrais -- 127. Interpreting Images by Propagating Bayesian Beliefs / Yair Weiss -- 128. Salient Contour Extraction by Temporal Binding in a Cortically-based Network / Shih-Cheng Yen and Leif H. Finkel -- VIII. Applications -- 129. An Orientation Selective Neural Network for Pattern Identification in Particle Detectors / Halina Abramowicz, David Horn, Ury Naftaly and Carmit Sahar-Pikielny -- 130. Adaptive Access Control Applied to Ethernet Data / Timothy X. Brown -- 131. Predicting Lifetimes in Dynamically Allocated Memory / David A. Cohn and Satinder Singh -- 132. Multi-Task Learning for Stock Selection / Joumana Ghosn and Yoshua Bengio -- 133. The Neurothermostat: Predictive Optimal Control of Residential Heating Systems / Michael C. Mozer, Lucky Vidmar and Robert H. Dodier -- 134. Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches / Mahesan Niranjan -- 135. A Comparison between Neural Networks and other Statistical Techniques for Modeling the Relationship between Tobacco and Alcohol and Cancer / Tony Plate, Pierre Band, Joel Bert and John Grace -- 136. Reinforcement Learning for Dynamic Channel Allocation in Cellular Telephone Systems / Satinder Singh and Dimitri Bertsekas -- 137. Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks / Kagan Tumer, Nirmala Ramanujam, Rebecca Richards-Kortum and Joydeep Ghosh -- 138. Interpolating Earth-science Data using RBF Networks and Mixtures of Experts / Ernest Wan and Don Bone -- 139. Multi-effect Decompositions for Financial Data Modeling / Lizhong Wu and John E. Moody -- IX. Control, Navigation and Planning -- 140. Multidimensional Triangulation and Interpolation for Reinforcement Learning / Scott Davies -- 141. Efficient Nonlinear Control with Actor-Tutor Architecture / Kenji Doya -- 142. Local Bandit Approximation for Optimal Learning Problems / Michael O. Duff and Andrew G. Barto -- 143. Reinforcement Learning for Mixed Open-loop and Closed-loop Control / Eric A. Hansen, Andrew G. Barto and Shlomo Zilberstein -- 144. Multi-Grid Methods for Reinforcement Learning in Controlled Diffusion Processes / Stephan Pareigis -- 145. Learning from Demonstration / Stefan Schaal -- 146. Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning / Jeff Schneider -- 147. Analytical Mean Squared Error Curves in Temporal Difference Learning / Satinder Singh and Peter Dayan -- 148. Learning Decision Theoretic Utilities through Reinforcement Learning / Magnus Stensmo and Terrence J. Sejnowski -- 149. On-line Policy Improvement using Monte-Carlo Search / Gerald Tesauro and Gregory R. Galperin -- 150. Analysis of Temporal-Difference Learning with Function Approximation / John N. Tsitsiklis and Benjamin Van Roy -- 151. Approximate Solutions to Optimal Stopping Problems / John N. Tsitsiklis and Benjamin Van Roy -- Index of Authors -- Keyword Index
Also available in print ed
Electronic reproduction. Cambridge, Mass.: MIT Press, [2004?] Mode of access: World Wide Web. Access restricted to subscribers
Subject Computational Intelligence
Neuroscience
Alt Author Jordan, Michael Irwin, 1956-
Mozer, Michael C
Petsche, Thomas
Record:   Prev Next