LEADER 00000nam a2200373 i 4500
001 CR9780511565700
003 UkCbUP
005 20181024172052.0
006 m o d
007 cr nn 008maaau
008 090518s1975 enk s 0 eng d
020 9780511565700|q(electronic bk.)
020 9780521207348|q(hardback)
020 9780521092999|q(paper)
040 UkCbUP|beng|erda|cUkCbUP|dGP
041 0 eng
050 4 QA251.5|b.C69 1975
082 04 512.2|219
100 1 Cozzens, J. H.|q(John H.),|d1942-|eauthor
245 10 Simple noetherian rings /|cJohn Cozzens and Carl Faith
264 1 Cambridge :|bCambridge University Press,|c1975
300 1 online resource (xvii, 135 pages) :|bdigital, PDF
file(s)
336 text|btxt|2rdacontent
337 unmediated|bn|2rdamedia
338 volume|bnc|2rdacarrier
347 text file|bPDF|2rda
490 1 Cambridge tracts in mathematics ;|v69
500 Title from publisher's bibliographic system (viewed on 05
Oct 2015)
520 This work specifically surveys simple Noetherian rings.
The authors present theorems on the structure of simple
right Noetherian rings and, more generally, on simple
rings containing a uniform right ideal U. The text is as
elementary and self-contained as practicable, and the
little background required in homological and categorical
algebra is given in a short appendix. Full definitions are
given and short, complete, elementary proofs are provided
for such key theorems as the Morita theorem, the
Correspondence theorem, the Wedderburn–Artin theorem, the
Goldie–Lesieur–Croisot theorem, and many others. Complex
mathematical machinery has been eliminated wherever
possible or its introduction into the text delayed as long
as possible. (Even tensor products are not required until
Chapter 3.)
650 0 Noetherian rings
700 1 Faith, Carl,|d1927-2014,|eauthor
830 0 Cambridge tracts in mathematics ;|v69
856 40 |uhttps://doi.org/10.1017/CBO9780511565700