LEADER 00000nam a2200373 i 4500 
001    CR9780511565700 
003    UkCbUP 
005    20181024172052.0 
006    m     o  d         
007    cr nn 008maaau 
008    090518s1975    enk     s         0 eng d 
020    9780511565700|q(electronic bk.) 
020    9780521207348|q(hardback) 
020    9780521092999|q(paper) 
040    UkCbUP|beng|erda|cUkCbUP|dGP 
041 0  eng 
050  4 QA251.5|b.C69 1975 
082 04 512.2|219 
100 1  Cozzens, J. H.|q(John H.),|d1942-|eauthor 
245 10 Simple noetherian rings /|cJohn Cozzens and Carl Faith 
264  1 Cambridge :|bCambridge University Press,|c1975 
300    1 online resource (xvii, 135 pages) :|bdigital, PDF 
       file(s) 
336    text|btxt|2rdacontent 
337    unmediated|bn|2rdamedia 
338    volume|bnc|2rdacarrier 
347    text file|bPDF|2rda 
490 1  Cambridge tracts in mathematics ;|v69 
500    Title from publisher's bibliographic system (viewed on 05 
       Oct 2015) 
520    This work specifically surveys simple Noetherian rings. 
       The authors present theorems on the structure of simple 
       right Noetherian rings and, more generally, on simple 
       rings containing a uniform right ideal U. The text is as 
       elementary and self-contained as practicable, and the 
       little background required in homological and categorical 
       algebra is given in a short appendix. Full definitions are
       given and short, complete, elementary proofs are provided 
       for such key theorems as the Morita theorem, the 
       Correspondence theorem, the Wedderburn–Artin theorem, the 
       Goldie–Lesieur–Croisot theorem, and many others. Complex 
       mathematical machinery has been eliminated wherever 
       possible or its introduction into the text delayed as long
       as possible. (Even tensor products are not required until 
       Chapter 3.) 
650  0 Noetherian rings 
700 1  Faith, Carl,|d1927-2014,|eauthor 
830  0 Cambridge tracts in mathematics ;|v69 
856 40 |uhttps://doi.org/10.1017/CBO9780511565700