Record:   Prev Next
Title Dispersive transport equations and multiscale models [electronic resource] / Naoufel Ben Abdallah [and others]
Imprint New York : Springer, ©2004
book jacket
Descript 1 online resource (x, 292 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series IMA volumes in mathematics and its applications ; v. 136
IMA volumes in mathematics and its applications ; v. 136
Note Includes bibliographical references and index
On the derivation of nonlinear Schrodinger and Vlasov equations -- Taking on the multiscale challenge -- Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system -- Integrated multiscale process simulation in microelectronics -- Constitutive relations for viscoelastic fluid models derived from kinetic theory -- Dispersive/hyperbolic hydrodynamic models for quantum transport (in semiconductor devices) -- A review on small debye length and quasi- neutral limits in macroscopic models for charged fluids -- Global solution of the Cauchy problem for the relativistic Vlasov-Poisson equation with cylindrically symmetric data -- Mesoscopic scale modeling for chemical vapor deposition in semiconductor manufacturing -- Asymptotic limits in macroscopic plasma models -- A Landau-Zener formula for two-scaled Wigner measures -- Mesoscopic modeling of surface processes -- Homogenous and heterogeneous models for silicon oxidation -- Feature-scale to wafer-scale modeling and simulation of physical vapor deposition -- WKB analysis in the semiclassical limit of a discrete NLS system -- Bifurcation analysis of cylindrical Couette flow with evaporation and condensation by the Boltzmann equation.-Magnetic instability in a collisionless plasma.-Combined list of wokshops participants for IMA volumes 135: transport in transition regimes and 136: dispersive transport equations and multiscale models
IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wdie range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc
Link Print version: Dispersive transport equations and multiscale models. New York : Springer, ©2004 (DLC) 2003054315
Subject Transport theory -- Congresses
Semiconductors -- Mathematical models -- Congresses
Multiscale modeling -- Congresses
Multiscale modeling. fast (OCoLC)fst01763130
Semiconductors -- Mathematical models. fast (OCoLC)fst01112238
Transport theory. fast (OCoLC)fst01154987
Electronic books
Conference proceedings. fast (OCoLC)fst01423772
Alt Author Ben-Abdallah, Naoufel
Record:   Prev Next