Record:   Prev Next
作者 Korvink, Jan G
書名 Inkjet-Based Micromanufacturing
出版項 Hoboken : John Wiley & Sons, Incorporated, 2012
©2012
國際標準書號 9783527647118 (electronic bk.)
9783527319046
book jacket
版本 1st ed
說明 1 online resource (389 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
系列 Advanced Micro and Nanosystems Ser
Advanced Micro and Nanosystems Ser
附註 Intro -- Inkjet-based Micromanufacturing -- Contents -- List of Contributors -- 1 Overview of Inkjet-Based Micromanufacturing -- 1.1 Introduction -- 1.2 Inkjet Technology -- 1.2.1 Continuous Mode Inkjet (CIJ) Technology -- 1.2.2 Demand Mode Inkjet Technology -- 1.3 Fluid Requirements -- 1.4 Pattern Formation: Fluid/Substrate Interaction -- 1.5 Micromanufacturing -- 1.5.1 Introduction -- 1.5.2 Limitations and Opportunities in Micromanufacturing -- 1.5.3 Benefits of Inkjet in Microfabrication -- 1.6 Examples of Inkjet in Micromanufacturing -- 1.6.1 Chemical Sensors -- 1.6.2 Optical MEMS Devices -- 1.6.3 Bio-MEMS Devices -- 1.6.4 Assembly and Packaging -- 1.7 Conclusions -- Acknowledgments -- References -- 2 Combinatorial Screening of Materials Using Inkjet Printing as a Patterning Technique -- 2.1 Introduction -- 2.2 Inkjet Printing - from Well-Defined Dots to Homogeneous Films -- 2.3 Thin-Film Libraries Prepared by Inkjet Printing -- 2.4 Combinatorial Screening of Materials for Organic Solar Cells -- 2.5 Conclusion and Outlook -- References -- 3 Thermal Inkjet -- 3.1 History of Thermal Inkjet Technology -- 3.2 Market Trends for Inkjet Products and Electrophotography -- 3.3 Structures of Various TIJ Heads -- 3.4 Research on Rapid Boiling and Principle of TIJ -- 3.5 Inkjetting Mechanism of TIJ -- 3.6 Basic Jetting Behavior of TIJ -- 3.6.1 Input Power Characteristics -- 3.6.2 Frequency Characteristics -- 3.6.3 Dependency on Temperature -- 3.7 TIJ Behavior Analysis Using Simulation -- 3.7.1 Cylindrical Thermal Propagating Calculation Based on the Finite Element Method (Software Name: Ansys) -- 3.7.2 Fluidic Free Boundary Calculation Based on the Finite Differentiation Method (Software name: Flow3D) -- 3.8 Issues with Reliability in TIJ -- 3.9 Present and Future Evolution in TIJ Technology -- References -- 4 High-Resolution Electrohydrodynamic Inkjet
4.1 Introduction -- 4.2 Printing System -- 4.3 Control of Jet Motions -- 4.4 Drop-on-Demand Mode Printing -- 4.5 Versatility of Printable Materials and Resolutions -- 4.6 Applications in Electronics and Biotechnology -- 4.7 High-Resolution Printing of Charge -- References -- 5 Cross Talk in Piezo Inkjet -- 5.1 Introduction -- 5.2 Electrical Cross Talk -- 5.3 Direct Cross Talk -- 5.4 Pressure-Induced Cross Talk -- 5.5 Acoustic Cross Talk -- 5.6 Printhead Resonance -- 5.7 Residual Vibrations -- References -- 6 Patterning -- 6.1 Introduction -- 6.1.1 Droplet Impact and Final Droplet Radius -- 6.1.2 Evaporation of Inkjet-Printed Droplets at Room Temperature -- 6.1.3 Morphological Control for Ink Droplets, Lines, and Films -- 6.2 Conclusion -- References -- 7 Drying of Inkjet-Printed Droplets -- 7.1 Introduction -- 7.2 Modeling of Drying of a Droplet -- 7.2.1 Fluid Model -- 7.2.2 Lubrication Approximation -- 7.2.3 Solute Concentration -- 7.2.4 Evaporation Velocity -- 7.2.5 Numerical Method -- 7.3 Results -- 7.3.1 Droplet Shape Evolution -- 7.3.2 Layer Thickness -- 7.3.3 Effect of Diffusion -- Acknowledgments -- References -- 8 Postprinting Processes for Inorganic Inks for Plastic Electronics Applications -- 8.1 Introduction -- 8.1.1 Inkjet Printing -- 8.1.2 Printed Electronics -- 8.2 Inkjet Printing and Postprinting Processes of Metallic Inks -- 8.2.1 Choice of Metal -- 8.2.2 Postprinting Processes to Convert Inorganic Precursor Ink -- 8.2.3 Conventional Sintering Techniques -- 8.2.4 Alternative and Selective Sintering Methods -- 8.2.5 Room-Temperature Sintering -- 8.3 Conclusions and Outlook -- Acknowledgments -- References -- 9 Vision Monitoring -- 9.1 Introduction -- 9.2 Measurement Setup -- 9.3 Image Processing -- 9.4 Jetting Speed Measurement -- 9.5 Head Normalization and Condition Monitoring -- 9.6 Meniscus Motion Measurement and Its Application
References -- 10 Acoustic Monitoring -- 10.1 Introduction -- 10.2 Self Sensing -- 10.3 Measuring Principle -- 10.4 Drop Formation, Refill, and Wetting -- 10.5 Dirt -- 10.6 Air Bubbles -- 10.7 Printhead Control -- References -- 11 Equalization of Jetting Performance -- 11.1 Equalization of the Droplet Volume on the Fly -- 11.1.1 Components of a Drop Watcher -- 11.1.2 Equalization through Volume Control -- 11.1.3 Results of the Droplet Volume Measurement and Equalization Process -- 11.1.4 Speed Equalization -- 11.1.5 Problems with the Droplet Equalization Methods on the Fly -- 11.1.5.1 Distortion of the Captured Droplet Images -- 11.1.5.2 Relation between Droplet Volume and Speed -- 11.2 Droplet Volume Equalization with Sessile Droplets -- 11.2.1 Equalizing the Droplet Volume with the Measurement of Sessile Droplets -- 11.2.2 Results of the Sessile Droplet Measurement and Equalization Process -- 11.2.3 Usefulness of the Sessile Droplet Measurement and Equalization Process -- 11.2.4 The Droplet Volume Equalization Process Using Light Transmittance -- 11.2.5 Result of the Droplet Volume Equalization Process Using Light Transmittance -- Further Reading -- 12 Inkjet Ink Formulations -- 12.1 Introduction -- 12.2 Ink Formulation -- 12.2.1 Functional Materials -- 12.2.2 Solvents -- 12.2.2.1 Solvent-Based Inks -- 12.2.2.2 Water-Based Inks -- 12.2.3 Hot-Melt (Phase-Change) Inks -- 12.2.4 UV-Curable Inks -- 12.3 Ink Parameters and Additives -- 12.3.1 Rheology Control -- 12.3.2 Surface Tension Modifiers -- 12.3.3 Electrolytes and pH -- 12.3.4 Foaming and Defoamers -- 12.3.5 Humectants -- 12.3.6 Binders -- 12.3.7 Biocides -- 12.3.8 Examples of Inkjet Ink Formulations -- 12.4 Jetting Performance -- 12.4.1 Drop Formation -- 12.4.2 Ink Latency -- 12.4.3 Recoverability -- 12.4.4 Ink Supply -- 12.5 Ink Interaction with Substrates -- 12.6 Nongraphic Applications
12.7 Conclusions -- References -- 13 Issues in Color Filter Fabrication with Inkjet Printing -- 13.1 Introduction -- 13.2 Background -- 13.3 Comparison of Printing Technologies -- 13.4 Printing Swathe due to Droplet Volume Variation -- 13.5 Subpixel Filling with a Designed Surface Energy Condition -- 13.6 Other Technical Issues -- 13.7 Conclusion -- References -- 14 Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs -- 14.1 Introduction -- 14.2 Background -- 14.3 Experimental Procedure and Results -- 14.3.1 Role of Droplet Formation -- 14.3.2 Atomic Force Microscopy -- 14.3.3 Electroluminescence -- 14.4 Inkjet-Printed, High-Density RGB Pixel Matrix -- 14.5 Conclusion -- Acknowledgment -- References -- Further Reading -- 15 Inkjet Printing of Metal Oxide Thin-Film Transistors -- 15.1 Introduction -- 15.2 Materials for Metal Oxide Semiconductors -- 15.3 Inkjet Printing Issues -- 15.3.1 Ink Printability -- 15.3.2 Influence of Substrate Preheat Temperature -- 15.4 Solution-to-Solid Conversion by Annealing -- 15.5 All-Oxide Invisible Transistors -- 15.6 Summary -- References -- 16 Inkjet Fabrication of Printed Circuit Boards -- 16.1 Introduction -- 16.2 Traditional Printed Circuit Board Processes -- 16.3 Challenges for Inkjet in Printed Circuit Boards -- 16.4 Legend-Marking Processes -- 16.4.1 Cost Comparison -- 16.4.2 Materials for Legend Printing -- 16.5 Innerlayer Copper Circuit Patterning -- 16.5.1 Materials for Copper Etch Resists -- 16.5.2 Substrate Modification -- 16.6 Copper Plating Resist -- 16.7 Waste Reduction Using Inkjet Printing -- 16.8 Solder Mask Printing -- 16.9 Metallic Inks -- 16.10 Theoretical Printing Example for PCB Manufacturing -- 16.11 Digital Printing Alternatives to Inkjet Fabrication -- 16.12 Future Applications for Inkjet in Printed Circuit Boards -- References -- 17 Photovoltaics
17.1 Introduction -- 17.2 Device Structures -- 17.3 Small- and Large-Area Printing for Photovoltaics -- 17.4 Commercial Inkjet for Photovoltaics -- 17.5 Summary and Perspective -- References -- 18 Inkjet Printed Electrochemical Sensors -- 18.1 Introduction -- 18.2 Printed Sensor Manufacturing -- 18.3 Inkjet Printing of Sensor Components -- 18.3.1 Substrates -- 18.3.2 Conducting Tracks -- 18.3.3 Transducer Materials -- 18.3.4 Biomolecules -- 18.4 Inkjet-Printed Sensor Applications -- 18.5 Future Commercial Projection -- Abbreviations -- References -- 19 Antennas for Radio Frequency Identification Tags -- 19.1 Introduction -- 19.1.1 Introduction to RFID -- 19.1.1.1 RFID Tag Classification -- 19.1.2 Applications of Printing to RFID Antenna Production -- 19.1.2.1 An Overview of RFID-HF versus UHF -- 19.1.2.2 Silicon-Based RFID Tag Construction - from Chip to Tag -- 19.2 Printed Antennas -- 19.2.1 HF Tag Antenna Considerations -- 19.2.2 UHF Tag Antenna Considerations -- 19.2.3 Application of Printing to Antenna Fabrication -- 19.2.4 Materials for Printed Antennas -- 19.2.4.1 Metallic Pastes -- 19.2.4.2 Particle-Based Inks -- 19.2.4.3 Organometallic Precursors -- 19.3 Summary of Status and Outlook for Printed Antennas -- References -- 20 Inkjet Printing for MEMS -- 20.1 Introduction -- 20.2 Photolithography and Etching -- 20.2.1 Photolithography -- 20.2.2 Etching -- 20.3 Direct Materials Deposition -- 20.4 Optical MEMS -- 20.5 MEMS Packaging -- 20.6 Functionalization and Novel Applications -- 20.7 Conclusion -- References -- 21 Inkjet Printing of Interconnects and Contacts Based on Inorganic Nanoparticles for Printed Electronic Applications -- 21.1 Introduction -- 21.2 Inkjet Printing of Metallic Inks for Contacts and Interconnects -- 21.2.1 Inkjet Printed Contacts and Interconnects for Microelectronic Applications
21.3 Inkjet Printing in High Resolution
Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Korvink, Jan G. Inkjet-Based Micromanufacturing Hoboken : John Wiley & Sons, Incorporated,c2012 9783527319046
主題 Microelectronics -- Design.;Microfabrication.;Ink-jet printing.;Microelectromechanical systems -- Design and construction
Electronic books
Alt Author Smith, Patrick J
Brand, Oliver
Fedder, Gary K
Hierold, Christofer
Tabata, Osamu
Shin, Dong H
Shin, Dong-Youn
Record:   Prev Next