作者 Kopp, Ulla C
書名 Neural control of renal function [electronic resource] / Ulla C. Kopp
出版項 San Rafael, California : Morgan & Claypool Life Sciences, 2018
國際標準書號 1615047751
161504776X
1615047778
9781615047758
9781615047765
9781615047772
book jacket
版本 2nd ed
說明 1 online resource (121 p.)
系列 Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease
Colloquium Series on Integrated Systems Physiology : From Molecule to Function to Disease
附註 Includes bibliographical references and index
Neural control of renal function, second edition -- Colloquium Digital Library of Life Sciences -- Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease -- Abstract -- Contents -- Preface -- Acknowledgments -- Part I. Efferent Renal Sympathetic Nerves -- Chapter 1. Introduction -- Chapter 2. Neuroanatomy -- Chapter 3. Neural Control of Renal Hemodynamics -- Chapter 4. Neural Control of Renal Tubular Function -- Chapter 5. Neural Control of Renin Secretion Rate -- Part II. Afferent Renal Sensory Nerves -- Chapter 6. Introduction -- Chapter 7. Neuroanatomy -- Chapter 8. Renorenal Reflexes -- Chapter 9. Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves -- Chapter 10. Efferent Renal Sympathetic and Afferent Renal Nerves -- Part III. Pathophysiological States -- Chapter 11. Conclusions -- References -- Author Biography
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Under normal conditions, the renal mechanosensory nerves activated by stretch of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension
主題 Kidneys -- Physiology
Kidneys -- Innervation
Kidneys -- Diseases
Science
Life Sciences
Anatomy & Physiology
Alt Author Granger, D. Neil, editor
Granger, Joey P., editor