MARC 主機 00000nam a22004933i 4500 
001    EBC1681250 
003    MiAaPQ 
005    20200713055302.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2009    xx      o     ||||0 eng d 
020    9789812837028|q(electronic bk.) 
020    |z9789812837011 
035    (MiAaPQ)EBC1681250 
035    (Au-PeEL)EBL1681250 
035    (CaPaEBR)ebr10422185 
035    (CaONFJC)MIL276069 
035    (OCoLC)729020487 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QP517.S87 -- F86 2009eb 
082 0  570 
100 1  Favret, Eduardo A 
245 10 Functional Properties Of Bio-inspired Surfaces :
       |bCharacterization and Technological Applications 
264  1 Singapore :|bWorld Scientific Publishing Company,|c2009 
264  4 |c©2009 
300    1 online resource (413 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Contents -- Preface -- List of Contributors -- 
       About the Editors -- I Functional Properties of Biological
       Surfaces -- Chapter 1. Biomimetics of Skins Julian F. V. 
       Vincent -- Abstract -- 1. Introduction -- 2. Surface 
       Hardening -- 3. Strain Sensors -- 4. Water Repellence -- 
       5. Color -- 6. Envoi -- References -- Chapter 2. The Shark
       Skin Effect AmyW. Lang -- Abstract -- 1. Introduction -- 
       2. Shark Skin Structure -- 3. Drag Reduction -- 3.1. 
       Marine Animal Locomotion -- 3.2. Skin-Friction Reduction -
       - 3.3. Separation Control -- 4. Drag-Reducing Capabilities
       of the Skin on Fast-Swimming Sharks -- 5. Summary With 
       Technological Applications -- Acknowledgments -- 
       References -- Chapter 3. Lotus Effect: Superhydrophobicity
       and Self-Cleaning Michael Nosonovsky and Edward 
       Bormashenko -- Abstract -- 1. Introduction -- 2. 
       Superhydrophobic Surfaces in Nature -- 2.1. Leaves ofWater
       -Repellent Plants -- 2.2. Insect and BirdsWings -- 2.3. 
       Insect Legs -- 3. Modeling Superhydrophobicity -- 3.1. 
       Wetting of Flat and Rough Surfaces: The Governing 
       Equations -- 3.1.1. The Young equation -- 3.1.2. The 
       Wenzel and Cassie equations -- 3.2. Contact Angle 
       Hysteresis -- 3.2.1. Definition of contact angle 
       hysteresis -- 3.2.2. Empirical models of contact angle 
       hysteresis -- 3.2.3. Simulation and semi-empirical models 
       -- 3.3. Stability and the Cassie-Wenzel Transition -- 
       3.3.1. Vibration-induced transition -- 3.3.2. Transition 
       during evaporation -- 3.3.3. Reversible 
       superhydrophobicity -- 3.4. Role of Hierarchical Roughness
       -- 3.5. Dynamic Effects: Bouncing Drops -- 3.6. A Drop on 
       an Inclined Surface -- 4. Self-Cleaning -- 5. Biomimetics:
       Artificial Superhydrophobic Surfaces -- 5.1. 
       Micropatterned Surfaces Produced by Lithography and Other 
       Methods -- 5.2. Evaporation Induced Honeycomb Polymer 
       Surfaces -- 5.3. Commercially Available Lotus-Effect 
       Products -- 6. Closure 
505 8  References -- Chapter 4. The Moth-Eye Effect - From 
       Fundamentals to Commercial Exploitation Andreas Gombert 
       and Benedikt Bläsi -- Abstract -- 1. Introduction -- 2. 
       Theory -- 2.1. Effective Medium Theories (EMTs) for 
       Subwavelength Gratings -- 3. Design Considerations -- 4. 
       Manufacturing -- 4.1. Origination by Interference 
       Lithography -- 4.2. Choice of Laser and Photoresist -- 
       4.3. Replication -- 5. Applications -- 6. Summary -- 
       References -- Chapter 5. The Gecko Effect: Design 
       Principles of the Gekkotan Adhesive System Across Scales 
       of Organization Anthony P. Russell and Megan K. Johnson --
       Abstract -- 1. Introduction -- 2. The Gecko Effect - How 
       is Attachment Achieved? -- 3. Structure of the Setal 
       Fields and the Anatomical Hierarchy on Which They Depend -
       - 4. Performance Aspects - Real-World Functional Demands 
       in Relation to the Gecko Effect -- 5. Biomimetics - The 
       Application of Design Principles to Exploitation of the 
       Gecko Effect -- 6. Conclusions -- References -- II 
       Characterization of Surfaces -- Chapter 6. Micro- and Nano
       -Scopic Observation of Biological Surfaces Zhaojie Zhang 
       and Qun Ren -- Abstract -- 1. Introduction -- 2. Surface 
       Observation Using Optical Microscopy -- 2.1. Light 
       Microscopy -- 2.2. Laser Scanning Confocal Microscopy 
       (LSCM) -- 3. Surface Observation Using Scanning Probe 
       Microscopy (SPM) -- 3.1. AFM in Biological Surface Study 
       and Topographic Analysis -- 3.2. Combination of AFMWith 
       Confocal Microscopy -- 4. Surface Observation Using 
       Electron Microscopy -- 4.1. SEM of Biological Surface -- 
       4.2. Environmental SEM (ESEM) ofWet Biological Samples -- 
       4.3. TEM Observation of the Inside of the Biological 
       Surfaces -- Acknowledgments -- References -- Chapter 7. 
       RIMAPS and Variogram Characterization of Micro-Nano 
       Topography Néstor O. Fuentes and Eduardo A. Favret -- 
       Abstract -- 1. Introduction to RIMAPS and Variogram 
       Analysis 
505 8  1.1. Basic Concepts of RIMAPS Technique -- 1.1.1. Theory -
       - 1.1.2. Examples of using RIMAPS for ideal geometrical 
       forms -- 1.1.3. Characterization of simple experimental 
       surfaces using RIMAPS -- 1.2. Basic Concepts of Variogram 
       Method -- 1.2.1. Variogram analysis -- 1.2.2. Examples of 
       using Variogram for ideal geometrical forms -- 1.2.3. 
       Characterization of simple experimental surfaces using 
       Variogram -- 2. Micro-Nano Topography Characterization -- 
       2.1. Biological Surfaces -- 2.2. Technological Surfaces --
       3. Conclusions -- Acknowledgments -- References -- Chapter
       8. Capillary Phenomena Gerardo Callegari and Adriana Calvo
       -- Abstract -- 1. Introduction -- 2. Wetting Properties: 
       Surface Energy and Tension -- 2.1. Molecular Interactions 
       -- 2.2. Adhesion and Cohesion -- 2.3. Wettability and 
       Contact Angle -- 2.4. Liquid vs Solid Surface Energy: 
       Measurement Techniques -- 2.4.1. Drop weight or drop 
       detachment -- 2.4.2. Shape of the droplet -- 2.4.3. Ring -
       - 2.4.4. Fiber or plate -- 2.5. Components -- 2.6. 
       Hysteresis of the Contact Angle -- 2.6.1. Classical 
       approach: roughness and chemical heterogeneities -- 2.6.2.
       Metastable configurations -- 2.6.3. Vibrations and the 
       global energy minimum (GEM) -- 2.6.4. Other sources of 
       hysteresis: smooth and homogeneous surfaces -- 3. 
       Capillarity -- 3.1. Dynamic Contact Angle -- 3.1.1. 
       Hydrodynamic model -- 3.2. Molecular Approach -- 4. Liquid
       Films -- 4.1. Film Formation -- 4.2. Stability Criteria --
       4.2.1. Nanoscopic films (h < 10 nm) and spinodal dewetting
       -- 4.2.2. Macroscopic films -- 4.3. Dewetting of Planar 
       Films -- 4.4. Cylindrical Films -- 4.4.1. Rayleigh 
       instability -- 4.5. Annular Films Dewetting -- References 
       -- Chapter 9. Chemical Characterization of Biological and 
       Technological Surfaces Peter Kruse -- Abstract -- 1. 
       Introduction -- 2. Sample Preparation -- 2.1. Freezing -- 
       2.2. Polishing -- 2.3. Sputtering 
505 8  3. Optical Spectroscopies (Photon Based) -- 3.1. Photon 
       Sources -- 3.2. Infrared Spectroscopy -- 3.3. Surface 
       Plasmon Resonance (SPR) -- 3.4. Raman Spectroscopy -- 3.5.
       Second Harmonic and Sum Frequency Generation (SHG and SFG)
       -- 3.6. X-ray Absorption Spectroscopy (XAS, NEXAFS, STXM, 
       PEEM) -- 4. Electron Spectroscopies -- 4.1. UV 
       Photoelectron Spectroscopy (UPS) -- 4.2. X-ray 
       Photoelectron Spectroscopy (XPS, ESCA) -- 4.3. Auger 
       Electron Spectroscopy (AES, SAM, PAES) -- 4.4. X-ray 
       Fluorescence (EDS, EDX, WDX, XRF) -- 4.5. Electron Energy 
       Loss Spectroscopy (EELS) -- 5. Particle Beams -- 5.1. 
       Small Angle Neutron Scattering (SANS) -- 5.2. Positron 
       Spectroscopy -- 5.3. Rutherford Backscattering 
       Spectrometry (RBS) -- 5.4. Medium Energy Ion Scattering 
       (MEIS) -- 5.5. Nuclear Reaction Analysis (NRA) -- 5.6. 
       Particle-induced X-ray Emission (PIXE) -- 5.7. Mass 
       Spectrometry -- 5.7.1. Dynamic secondary ion mass 
       spectrometry (SIMS) -- 5.7.2. Static secondary ion mass 
       spectrometry (SIMS) -- 5.7.3. Self-assembled monolayer 
       desorption ionization mass spectrometry (SAMDI) -- 6. 
       Proximity Probes -- 6.1. Elastic and Inelastic Tunneling 
       Spectroscopy -- 6.2. Force and Chemical Force Spectroscopy
       -- 6.3. Scanning Electrochemical Microscopy (SECM) -- 6.4.
       Locally Enhanced Raman Effect -- 6.5. Nearfield Optical 
       Methods -- 7. Summary -- Acknowledgment -- References -- 
       III Methods for Modifying Man-Made Surfaces -- Chapter 10.
       Laser Interference Metallurgy Frank Mücklich and Andrés 
       Fabián Lasagni -- Abstract -- 1. Introduction -- 2. 
       Interference Principle -- 3. Design of Periodical 
       Structures -- 4. Laser Interference Patterning System -- 
       5. Thermal Simulation -- 6. Practical Examples -- 6.1. 
       Topographic Design in Bulk Metallic Substrates -- 6.2. 
       Microstructure Design in Thin Metallic Films -- 6.2.1. 
       Grain-size distribution and texture 
505 8  6.2.2. Long-range order intermetallic formation -- 6.3. 
       Pattering of Polymeric Substrates -- 6.4. In Vitro Cell 
       Response of Micropatterned Polymer Surface -- 
       Acknowledgments -- References -- Chapter 11. 
       Electrodeposition - Fundamental Aspects and Methods Stanko
       R. Brankovic -- Abstract -- 1. Introduction -- 2. 
       Electrodeposition Kinetics -- 3. Overpotential Co-
       Deposition (OPCD) - Electrodeposition of Alloys -- 4. 
       Underpotential Deposition (UPD) -- 5. Underpotential Co-
       Deposition (UPCD) -- 6. Metal Deposition by Galvanic 
       Displacement of UPD ML (MLS) -- 7. Spontaneous Noble Metal
       on Noble Metal (NMonNM) Deposition -- 8. Pulse Current 
       Deposition -- 9. Additive Effect -- 10. Specific Aspects 
       of Electrodeposition into Nanotemplate Electrodes -- 11. 
       Electrodeposition vs Surface Hydrophobicity -- 
       Acknowledgment -- References -- Chapter 12. Surface 
       Modification by Plasma-Based Processes Evangelina De Las 
       Heras, Gabriel Ybarra, Iñigo Braceras and Pablo Corengia -
       - Abstract -- 1. Introduction -- 2. Classification of 
       Plasmas -- 2.1. DC Discharges -- 2.2. RF Discharges -- 3. 
       Modification of Functional Surface Properties by Plasma-
       Based Processes -- 3.1. Plasma Grafting and Polymerization
       -- 3.1.1. Grafting -- 3.1.2. Plasma polymerization -- 3.2.
       Physical Vapor Deposition (PVD) and Chemical Vapor 
       Deposition (CVD) -- 3.3. Ion Beam Processes -- 4. 
       Biomimetics -- 5. Applications -- 5.1. Surfaces with 
       Improved Mechanical Properties -- 5.2. Antireflective 
       Surfaces -- 5.3. Hydrophobic and Hydrophilic Surfaces -- 
       5.4. Biomolecule Immobilization -- 5.5. Biosensors -- 5.6.
       Sterilization -- 5.7. Antimicrobial Surfaces -- 5.8. 
       Interaction with Living Tissue -- 5.9. Therapies and Drug 
       Release -- 5.10. Treating Living Organisms -- 6. 
       Conclusions -- Acknowledgment -- References -- Index 
520    Many good books have been written recently on this new 
       field called biomimetics or bionics, but few exploring 
       simultaneously the characterization and technological 
       processes to produce man-made surfaces with similar 
       properties as the biological ones. Bio-inspired surface 
       structures offer significant commercial potential for the 
       creation of antireflective, self-cleaning and drag 
       reducing surfaces, as well as new types of adhesive 
       systems. This review volume explores how the current 
       knowledge of the biological structures occurring on the 
       surface of moth eyes, leaves, sharkskin, and the feet of 
       reptiles can be transferred to functional technological 
       materials. It analyses how such surfaces can be described 
       and characterized using microscopic techniques and thus 
       reproduced. It also encompasses the important areas of 
       current surface replication techniques and the associated 
       acquisition of good master structures. The book is divided
       in three sections: an introduction of the skin functions 
       and four functional properties of biological surfaces; 
       physical, chemical and microscopy techniques for 
       describing and characterizing the surfaces; and 
       replication techniques for modifying non-natural surfaces.
       Sample Chapter(s). Chapter 1: Biomimetics of Skins (1,776 
       KB). Contents: Biomimetics of Skins (J F V Vincent); The 
       Shark Skin Effect (A W Lang); Lotus Effect: 
       Superhydrophobicity and Self-Cleaning (M Nosonovsky & E 
       Bormashenko); The Moth-Eye Effect - From Fundamentals to 
       Commercial Exploitation (A Gombert & B Bläsi); The Gecko 
       Effect: Design Principles of the Gekkotan Adhesive System 
       Across Scales of Organization (A P Russel & M K Johnson); 
       Micro- and Nano-Scopic Observation of Biological Surfaces 
       (Z-J Zhang & Q Ren); RIMAPS and Variogram Characterization
       of Micro-Nano Topography (N O Fuentes & E A Favret); 
       Capillary Phenomena (G Callegari & A Calvo); Chemical 
520 8  Characterization of Biological and Technological Surfaces 
       (P Kruse); Laser Interference Metallurgy (F Mücklich & A F
       Lasagni); Electrodeposition - Fundamental Aspects and 
       Methods (S R Brankovic); Surface Modification by Plasma-
       Based Processes (E De Las Heras et al.). Readership: 
       Academics and professionals in biomimetism and materials 
       science 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Surface chemistry.;Biological interfaces.;Biomedical 
       materials.;Surfaces (Technology);Surfaces (Physics) 
655  4 Electronic books 
700 1  Fuentes, Nestor O 
776 08 |iPrint version:|aFavret, Eduardo A|tFunctional Properties
       Of Bio-inspired Surfaces: Characterization And 
       Technological Applications|dSingapore : World Scientific 
       Publishing Company,c2009|z9789812837011 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1681250|zClick to View