MARC 主機 00000cam  2200469 i 4500 
001    1039616508 
003    OCoLC 
005    20190410220337.0 
008    181011t20182018riu      b    000 0 eng   
010    2018048667 
020    9781470429638 
020    1470429632 
035    (OCoLC)1039616508 
040    DLC|beng|erda|cDLC|dMUM|dUIU|dMNU|dYDX|dOCLCO|dYDX|dPAU
       |dAS|dMATH 
042    pcc 
050 00 QA612.3|b.L55 2018 
082 00 514/.34|223 
100 1  Lin, Francesco,|d1988-|eauthor 
245 12 A Morse-Bott approach to monopole Floer homology and the 
       triangulation conjecture /|cFrancesco Lin 
264  1 Providence, RI :|bAmerican Mathematical Society,|c2018 
264  4 |c2018 
300    v, 162 pages ;|c26 cm 
336    text|btxt|2rdacontent 
337    unmediated|bn|2rdamedia 
338    volume|bnc|2rdacarrier 
490 1  Memoirs of the American Mathematical Society,|x0065-9266 ;
       |vnumber 1221 
500    "September 2018. Volume 255. Number 1221 (fourth of 7 
       numbers)." 
504    Includes bibliographical references 
505 0  Introduction -- Basic setup -- The analysis of Morse-Bott 
       singularities -- Floer homology for Morse-Bott 
       singularities -- Pin(2)-monopole Floer homology 
520 3  "In the present work we generalize the construction of 
       monopole Floer homology due to Kronheimer and Mrowka to 
       the case of a gradient flow with Morse-Bott singularities.
       Focusing then on the special case of a three-manifold 
       equipped with a spin[superscript]c structure which is 
       isomorphic to its conjugate, we define the counterpart in 
       this context of Manolescu's recent Pin(2)-equivariant 
       Seiberg-Witten-Floer homology. In particular, we provide 
       an alternative approach to his disproof of the celebrated 
       Triangulation conjecture."--Page v 
650  0 Floer homology 
650  0 Triangulation 
650  0 Manifolds (Mathematics) 
830  0 Memoirs of the American Mathematical Society ;|vno. 1221 
館藏地 索書號 處理狀態 OPAC 訊息 條碼
 數學所圖書室  QA612.3 L55 2018    在架上    30340200561250