MARC 主機 00000nam  2201201 i 4500 
001    EBC1911737 
003    MiAaPQ 
006    m     o  d |       
007    cr cnu|||||||| 
008    150124s2015    nyua   foab   001 0 eng d 
020    9781606501719|qelectronic 
020    |z9781606501702|qprint 
024 7  |z10.5643/9781606501719|2doi 
035    (OCoLC)900732840 
035    (CaBNvSL)swl00404624 
035    (MiAaPQ)EBC1911737 
035    (Au-PeEL)EBL1911737 
035    (CaPaEBR)ebr11007943 
035    (CaONFJC)MIL688128 
035    (OCoLC)899728211 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TS156.8|b.M357 2015 
082 0  629.83|223 
100 1  McMillan, Gregory K.,|d1946-,|eauthor 
245 10 Tuning and control loop performance /|cGregory K. McMillan
250    Fourth edition 
264  1 New York, [New York] (222 East 46th Street, New York, NY 
       10017) :|bMomentum Press,|c2015 
300    1 online resource (xxxiv, 546 pages) :|billustrations 
336    text|2rdacontent 
337    computer|2rdamedia 
338    online resource|2rdacarrier 
490 1  Manufacturing and engineering collection 
504    Includes bibliographical references (pages 523-527) and 
       index 
505 0  1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -
       - 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID 
       controller -- 1.2.1 Proportional mode -- 1.2.2 Integral 
       mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output 
       limits -- 1.2.5 Control action and valve action -- 1.2.6 
       Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of 
       process responses -- 1.3.2 Dead times and time constants -
       - 1.3.3 Open loop self-regulating and integrating process 
       gains -- 1.3.4 Deadband, resolution, and threshold 
       sensitivity -- 1.4 Typical mode settings -- 1.5 Typical 
       tuning methods -- 1.5.1 Lambda tuning for self-regulating 
       processes -- 1.5.2 Lambda tuning for integrating processes
       -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4
       IMC tuning for integrating processes -- 1.5.5 Skogestad 
       internal model control tuning for self-regulating 
       processes -- 1.5.6 SIMC tuning for integrating processes -
       - 1.5.7 Traditional open loop tuning -- 1.5.8 Modified 
       Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified 
       Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 
       Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning 
       for self-regulating processes -- 1.5.12 SCM tuning for 
       integrating processes -- 1.5.13 SCM tuning for runaway 
       processes -- 1.5.14 Maximizing absorption of variability 
       tuning for surge tank level -- 1.6 Test results -- 1.6.1 
       Performance of tuning settings on dead time dominant 
       processes -- 1.6.2 Performance of tuning settings on near-
       integrating processes -- 1.6.3 Performance of tuning 
       settings on true integrating processes -- 1.6.4 
       Performance of tuning settings on runaway processes -- 
       1.6.5 Slow oscillations from low PID gain in integrating 
       and runaway processes -- 1.6.6 Performance of tuning 
       methods on various processes -- Key points -- 
505 8  2. Unified methodology -- 2.1 Introduction -- 2.1.1 
       Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 
       2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset
       feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 
       2.2.5 Signal characterization -- 2.2.6 Feedforward -- 
       2.2.7 Decoupling -- 2.2.8 Output tracking and remote 
       output -- 2.2.9 Setpoint filter, lead-lag, and rate limits
       -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 
       Automation system difficulties -- 2.3.1 Open loop gain 
       problems -- 2.3.2 Time constant problems -- 2.3.3 Dead 
       time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise
       problems -- 2.3.6 Accuracy and precision problems -- 2.4 
       Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 
       Maximize safety and environmental protection -- 2.4.3 
       Minimize product variability -- 2.4.4 Maximize process 
       efficiency and capacity -- 2.5 Step-by-step solutions -- 
       2.6 Test results -- Key points -- 
505 8  3. Performance criteria -- 3.1 Introduction -- 3.1.1 
       Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 
       3.2 Disturbance response metrics -- 3.2.1 Accumulated 
       error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 
       Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 
       Overshoot and undershoot -- Key points -- 
505 8  4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1
       Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 
       4.2 Effect of mechanical design -- 4.2.1 Equipment and 
       piping dynamics -- 4.2.2 Common equipment and piping 
       design mistakes -- 4.3 Estimation of total dead time -- 
       4.4 Estimation of open loop gain -- 4.5 Major types of 
       process responses -- 4.5.1 Self-regulating processes -- 
       4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 
       4.6 Examples -- 4.6.1 Waste treatment pH loops (self-
       regulating process) -- 4.6.2 Boiler feedwater flow loop 
       (self-regulating process) -- 4.6.3 Boiler drum level loop 
       (integrating process) -- 4.6.4 Furnace pressure loop (near
       -integrating process) -- 4.6.5 Exothermic reactor cascade 
       temperature loop (runaway process) -- 4.6.6 Biological 
       reactor biomass concentration loop (runaway process) -- 
       Key points -- 
505 8  5. Effect of controller dynamics -- 5.1 Introduction -- 
       5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 
       Recommendations -- 5.2 Execution rate and filter time -- 
       5.2.1 First effect via equation for integrated error -- 
       5.2.2 Second effect via equations for implied dead time --
       5.3 Smart reset action -- 5.4 Diagnosis of tuning problems
       -- 5.5 Furnace pressure loop example (near-integrating) --
       5.6 Test results -- Key points -- 
505 8  6. Effect of measurement dynamics -- 6.1 Introduction -- 
       6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 
       Recommendations -- 6.2 Wireless update rate and 
       transmitter damping -- 6.2.1 First effect via equation for
       integrated error -- 6.2.2 Second effect via equations for 
       implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and 
       delays -- 6.5 Noise and repeatability -- 6.6 Threshold 
       sensitivity and resolution limits -- 6.7 Rangeability 
       (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, 
       precision, and drift -- 6.10 Attenuation and deception -- 
       6.11 Examples -- 6.11.1 Waste treatment pH loop (self-
       regulating process) -- 6.11.2 Boiler feedwater flow loop 
       (self-regulating process) -- 6.11.3 Boiler drum level loop
       (integrating process) -- 6.11.4 Furnace pressure loop 
       (near-integrating process) -- 6.11.5 Exothermic reactor 
       cascade temperature loop (runaway process) -- 6.11.6 
       Biological reactor biomass concentration loop (runaway 
       process) -- 6.12 Test results -- Key points -- 
505 8  7. Effect of valve and variable frequency drive dynamics -
       - 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview 
       -- 7.1.3 Recommendations -- 7.2 Valve positioners and 
       accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 
       Digital positioners -- 7.2.3 Current to pneumatic (I/P) 
       transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume 
       boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 
       Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 
       Linkages and connections -- 7.4 VFD system design -- 7.4.1
       Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 
       Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor 
       requirements -- 7.4.6 Drive controls -- 7.5 Dynamic 
       response -- 7.5.1 Control valve response -- 7.5.2 VFD 
       response -- 7.5.3 Dead time approximation -- 7.5.4 
       Deadband and resolution -- 7.5.5 When is a valve or VFD 
       too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow 
       characteristics and rangeability -- 7.6.1 Valve flow 
       characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD 
       flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best
       practices -- 7.7.1 Control valve design specifications -- 
       7.7.2 VFD design specifications -- 7.8 Test results -- Key
       points -- 
505 8  8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 
       Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 
       8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 
       8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 
       8.2.4 Disturbance oscillations -- 8.3 Disturbance location
       -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of 
       fast oscillations -- 8.4.2 Sources of slow oscillations --
       8.5 Disturbance mitigation -- 8.6 Test results -- Key 
       points -- 
505 8  9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 
       Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 
       9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 
       Reversals of process sign -- 9.2.3 Signal characterization
       -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 
       9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 
       Variable time constant -- 9.5 Inverse response -- 9.6 Test
       results -- Key points -- 
505 8  10. Effect of interactions -- 10.1 Introduction -- 10.1.1 
       Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -
       - 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 
       Distillation column example -- 10.2.3 Static mixer example
       -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains 
       less than zero -- 10.2.6 Relative gains from zero to one -
       - 10.2.7 Relative gains greater than one -- 10.2.8 Model 
       predictive control -- 10.3 Decoupling -- 10.4 Directional 
       move suppression -- 10.5 Tuning -- 10.6 Test results -- 
       Key points -- 
505 8  11. Cascade control -- 11.1 Introduction -- 11.1.1 
       Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -
       - 11.2 Configuration and tuning -- 11.3 Process control 
       benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-
       outs -- 11.6 Test results -- Key points -- 
505 8  12. Advanced regulatory control -- 12.1 Introduction -- 
       12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 
       Recommendations -- 12.2 Feedforward control -- 12.2.1 
       Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent 
       output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs
       -- 12.4 Intelligent integral action -- 12.4.1 
       Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time 
       compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs 
       -- 12.6 Valve position control -- 12.6.1 Opportunities -- 
       12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 
       Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results --
       Key points -- 
505 8  13. Process control improvement -- 13.1 Introduction -- 
       13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 
       Recommendations -- 13.2 Unit operation metrics -- 13.3 
       Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing 
       capacity and efficiency -- 13.3.3 Effective use of models 
       -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- 
       Key points -- 
505 8  14. Auto tuners and adaptive control -- 14.1 Introduction 
       -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 
       Recommendations -- 14.2 Methodology -- Key points -- 
505 8  15. Batch optimization -- 15.1 Introduction -- 15.1.1 
       Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -
       - 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key
       points -- 
505 8  Appendix A. Automation system performance top 10 concepts 
       -- Appendix B. Basics of PID controllers -- Appendix C. 
       Controller performance -- Appendix D. Discussion -- 
       Appendix E. Enhanced PID for wireless and analyzer 
       applications -- Appendix F. First principle process 
       relationships -- Appendix G. Gas pressure dynamics -- 
       Appendix H. Convective heat transfer coefficients -- 
       Appendix I. Interactive to noninteractive time constant 
       conversion -- Appendix. Jacket and coil temperature 
       control -- Appendix K. PID forms and conversion of tuning 
       settings -- Appendix L. Liquid mixing dynamics -- Appendix
       M. Measurement speed requirements for SIS -- References --
       Bibliography -- About the author -- Index 
506    Restricted to libraries which purchase an unrestricted PDF
       download via an IP 
520 3  The proportional-integral-derivative (PID) controller is 
       the heart of every control system in the process industry.
       Given the proper setup and tuning, the PID has proven to 
       have the capability and flexibility needed to meet nearly 
       all of industry's basic control requirements. However, the
       information to support the best use of these features has 
       fallen behind the progress of improved functionality. 
       Additionally, there is considerable disagreement on the 
       tuning rules that largely stems from a misunderstanding of
       how tuning rules have evolved and the lack of recognition 
       of the effect of automation system dynamics and the 
       incredible spectrum of process responses, disturbances, 
       and performance objectives. This book provides the 
       knowledge to eliminate the misunderstandings, realize the 
       difference between theoretical and industrial application 
       of PID control, address practical difficulties, improve 
       field automation system design, use the latest PID 
       features, and ultimately get the best tuning settings that
       enables the PID to achieve its full potential 
588    Title from PDF title page (viewed on January 24, 2015) 
590    Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. 
       Available via World Wide Web. Access may be limited to 
       ProQuest affiliated libraries 
650  0 Process control 
650  0 Feedback control systems 
653    adaptive control 
653    advanced regulatory control 
653    analyzer response 
653    auto tuner 
653    automation system 
653    batch optimization 
653    bioreactor control 
653    cascade control 
653    compressor control 
653    control loop performance 
653    control valve response 
653    external reset feedback 
653    feedforward control 
653    inverse response 
653    lambda tuning 
653    level control 
653    measurement response 
653    pH control 
653    PID control 
653    PID execution rate 
653    PID filter 
653    PID form 
653    PID structure 
653    PID tuning 
653    pressure control 
653    process control 
653    process disturbances 
653    process dynamics 
653    process interaction 
653    process metrics 
653    process nonlinearity 
653    process performance 
653    process response 
653    proportional-integral-derivative controller 
653    reactor control 
653    runaway reaction 
653    temperature control 
653    valve deadband 
653    valve position control 
653    valve resolution 
653    variable frequency drive response 
653    wireless control 
653    wireless response 
655  4 Electronic books 
776 08 |iPrint version:|z9781606501702 
830  0 Manufacturing and engineering collection 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1911737|zClick to View