Record:   Prev Next
作者 Connolly, Joseph W., author
書名 Understanding the magic of the bicycle : basic scientific explanations to the two-wheeler's mysterious and fascinating behavior / Joseph W. Connolly
出版項 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2016]
國際標準書號 9781681744407 print
9781681744438 mobi
9781681744414 ebook
國際標準號碼 10.1088/978-1-6817-4441-4 doi
說明 1 electronic document (various pagings) : illustrations
text rdacontent
computer rdamedia
online resource rdacarrier
系列 IOP concise physics, 2053-2571
[IOP release 3]
IOP (Series). Release 3
IOP concise physics
附註 "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso
"Version: 20161201"--Title page verso
Includes bibliographical references (page A-1)
12. Centripetal acceleration--turning and bicycle stability -- 12.1. Review of Newton's laws--centripetal force and acceleration -- 12.2. Making a turn -- 12.3. Banked surface -- 12.4. Equilibrium and stability -- 12.5. Equilibrium and stability with multiple points of support -- 12.6. Stability of runners -- 12.7. Stability of sprinter -- 12.8. Equilibrium and stability with single point of support -- 12.9. Stability of broom when not in equilibrium -- 12.10. Stability of bicycle when not in equilibrium -- 12.11. Self stability of a bicycle -- 12.12. Summation of bicycle stability -- Appendices -- A. Bibliography -- B. Common unit conversions -- C. Trigonometric values
11. Torque--applications to the bicycle -- 11.1. Basic physics of torque -- 11.2. Rotational equilibrium -- 11.3. Mechanical advantage -- 11.4. Energy aspects of a high mechanical advantage -- 11.5. Multiple lever system -- 11.6. Early direct drive bicycles -- 11.7. High-wheelers -- 11.8. The safety bicycle -- 11.9. Force transmission in a geared bicycle -- 11.10. Multispeed gearing--force analysis -- 11.11. Gearing and pedaling cadence -- 11.12. Gearing and pedaling force -- 11.13. Braking -- 11.14. Wheelies -- 11.15. Headers
10. Rotational motion -- 10.1. Kinematics of circular motion -- 10.2. Dynamics of circular motion -- 10.3. Rotational kinetic energy -- 10.4. Moment of inertia of non-point masses -- 10.5. Moment of inertia and rotational kinetic energy of bicycle wheel -- 10.6. Angular momentum -- 10.7. Role of angular momentum in a bicycle
9. Temperature and heat -- 9.1. Temperature and its measurement -- 9.2. Heat -- 9.3. Units of heat -- 9.4. Heat generation on a bicycle -- 9.5. Mechanisms for heat transfer -- 9.6. Conduction -- 9.7. Convection -- 9.8. Radiation -- 9.9. Evaporation -- 9.10. Cooling effects of evaporation -- 9.11. Role of cycling clothing -- 9.12. Wind effects on cooling capacity of evaporation -- 9.13. Humidity and dew point -- 9.14. Specific heat
8. Work-energy-power -- 8.1. Work -- 8.2. Kinetic energy -- 8.3. Frictional effects -- 8.4. Gravitational potential energy -- 8.5. Conservation of energy -- 8.6. Energy conversion between kinetic and potential on the bicycle -- 8.7. Power--the basic physics -- 8.8. Power and kinetic energy -- 8.9. Power output to overcome resistive forces on a bike -- 8.10. Efficiency considerations in muscular effort -- 8.11. Average speed versus average power
7. Momentum-impulse -- 7.1. The basic physics of momentum -- 7.2. Momentum and Newton's Second Law -- 7.3. Impulse -- 7.4. Momentum and impulse aspects of bicycle accidents
6. Gravity -- 6.1. The basic physics of gravity -- 6.2. Weight of objects -- 6.3. ‘Weight' of object as measured by a scale -- 6.4. Force of gravity on a slope--the basic physics -- 6.5. Riding uphill at a constant speed -- 6.6. Terminal speed -- 6.7. Terminal speed coasting downhill on a bike -- 6.8. Personalized determination of resistive force parameters
5. Forces--Newton's laws of motion -- 5.1. Newton's First Law of Motion -- 5.2. Newton's Second Law of Motion -- 5.3. Units of force, motion, mass -- 5.4. Newton's Third Law of Motion -- 5.5. Role of arm muscles -- 5.6. Frictional forces--a simple model -- 5.7. Static and sliding friction -- 5.8. Friction as the propulsion force in walking -- 5.9. The acceleration and deceleration of the bicycle -- 5.10. Maximum acceleration of a bicycle -- 5.11. Velocity and acceleration of a bicycle -- 5.12. Resistive forces on a moving bicycle -- 5.13. Air resistance -- 5.14. Rolling resistance -- 5.15. Bearing resistance -- 5.16. Coasting--simplified analysis -- 5.17. Force analysis walking versus riding -- 5.18. Average versus instantaneous pedal force
4. Linear motion -- 4.1. Kinematics--the study of motion -- 4.2. Headwinds and tailwinds -- 4.3. Riding uphill and downhill
3. A review of basic ideas -- 3.1. Algebra -- 3.2. Trigonometry -- 3.3. Vectors -- 3.4. Head to tail method of vector arithmetic -- 3.5. Resolution into components -- 3.6. Units of measurement -- 3.7. Unit conversions -- 3.8. Density -- 3.9. Concepts of mass -- 3.10. Center of mass -- 3.11. Our standard rider
Preface -- 1. Introduction--the magic of the wheel -- 2. The evolution of the bicycle -- 2.1. Beginnings -- 2.2. Baron Karl Von Drais's running machine -- 2.3. The boneshaker -- 2.4. Early refinements -- 2.5. High-wheelers -- 2.6. Further refinements -- 2.7. The safety bicycle -- 2.8. Pneumatic tires -- 2.9. Bearings -- 2.10. Rider position -- 2.11. Materials
The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature
Also available in print
System requirements: Adobe Acrobat Reader, EPUB reader. or Kindle reader
Mode of access: World Wide Web
The author, Joseph W. Connolly, is a Professor of Physics/EE at the University of Scranton. He has a BS degree from the University of Scranton, a MS degree from the University of Illinois and a PhD from the Pennsylvania State University. In a teaching career spanning five decades, he has taught close to four dozen different courses, many tailored for the non-science major. He served in the United States Army, Signal Corps, with an honorable discharge as a Captain. Other professional activities include several years in industry and two decades of industrial consulting in computer aided design and digital image processing
Title from PDF title page (viewed on January 13, 2017)
鏈接 Print version: 9781681744407
主題 Physics
Physics. bicssc
Applied Physics. bicssc
SCIENCE / Physics / General. bisacsh
Bicycles -- Dynamics
Alt Author Institute of Physics (Great Britain), publisher
Morgan & Claypool Publishers, publisher
Alt Title Basic scientific explanations to the two-wheeler's mysterious and fascinating behavior
Record:   Prev Next