作者 Rao, Ashok
書名 Sustainable Energy Conversion for Electricity and Coproducts : Principles, Technologies, and Equipment
出版項 Somerset : John Wiley & Sons, Incorporated, 2015
©2015
國際標準書號 9781119064428 (electronic bk.)
9781118396629
book jacket
版本 1st ed
說明 1 online resource (426 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
附註 Intro -- Title Page -- Copyright Page -- Contents -- Preface -- About The Book -- About The Author -- 1 Introduction to Energy Systems -- 1.1 Energy Sources and Distribution of Resources -- 1.1.1 Fossil Fuels -- 1.1.1.1 Natural Gas -- 1.1.1.2 Petroleum -- 1.1.1.3 Coal -- 1.1.1.4 Oil Shale -- 1.1.2 Nuclear -- 1.1.3 Renewables -- 1.1.3.1 Biomass and Municipal Solid Waste -- 1.1.3.2 Hydroelectric -- 1.1.3.3 Solar -- 1.1.3.4 Wind -- 1.1.3.5 Geothermal -- 1.2 Energy and The Environment -- 1.2.1 Criteria and Other Air Pollutants -- 1.2.1.1 Carbon Monoxide and Organic Compounds -- 1.2.1.2 Sulfur Oxides -- 1.2.1.3 Nitrogen Oxides -- 1.2.1.4 Ozone -- 1.2.1.5 Lead -- 1.2.1.6 Particulate Matter -- 1.2.1.7 Mercury -- 1.2.2 Carbon Dioxide Emissions, Capture, and Storage -- 1.2.3 Water Usage -- 1.3 Holistic Approach -- 1.3.1 Supply Chain and Life Cycle Assessment -- 1.4 Conclusions -- References -- 2 Thermodynamics -- 2.1 First Law -- 2.1.1 Application to a Combustor -- 2.1.1.1 Methane Combustor Exhaust Temperature -- 2.1.2 Efficiency Based on First Law -- 2.2 Second Law -- 2.2.1 Quality Destruction and Entropy Generation -- 2.2.2 Second Law Analysis -- 2.2.3 First and Second Law Efficiencies -- 2.3 Combustion and Gibbs Free Energy Minimization -- 2.4 Nonideal Behavior -- 2.4.1 Gas Phase -- 2.4.2 Vapor-Liquid Phases -- References -- 3 Fluid Flow Equipment -- 3.1 Fundamentals of Fluid Flow -- 3.1.1 Flow Regimes -- 3.1.2 Extended Bernoulli Equation -- 3.2 Single-Phase Incompressible Flow -- 3.2.1 Pressure Drop in Pipes -- 3.2.2 Pressure Drop in Fittings -- 3.3 Single-Phase Compressible Flow -- 3.3.1 Pressure Drop in Pipes and Fittings -- 3.3.2 Choked Flow -- 3.4 Two-Phase Fluid Flow -- 3.4.1 Gas-Liquid Flow Regimes -- 3.4.2 Pressure Drop in Pipes and Fittings -- 3.4.3 Droplet Separation -- 3.5 Solid fluid Systems -- 3.5.1 Flow Regimes -- 3.5.2 Pressure Drop
3.5.3 Pneumatic Conveying -- 3.6 Fluid Velocity in Pipes -- 3.7 Turbomachinery -- 3.7.1 Pumps -- 3.7.1.1 Centrifugal Pumps -- 3.7.1.2 Axial Pumps -- 3.7.1.3 Rotary Pumps -- 3.7.1.4 Reciprocating Pumps -- 3.7.1.5 Specific Speed -- 3.7.1.6 Net Positive Suction Head -- 3.7.1.7 Pumping Power -- 3.7.1.8 System Requirements and Pump Characteristics -- 3.7.2 Compressors -- 3.7.2.1 Centrifugal Compressors -- 3.7.2.2 Axial Compressors -- 3.7.2.3 Reciprocating Compressors -- 3.7.2.4 Rotary Screw Compressors -- 3.7.2.5 System Requirements and Compressor Characteristics -- 3.7.2.6 Compression Power and Intercooling -- 3.7.3 Fans and Blowers -- 3.7.4 Expansion Turbines -- 3.7.4.1 Expansion Power and Reheat -- References -- 4 Heat Transfer Equipment -- 4.1 Fundamentals of Heat Transfer -- 4.1.1 Conduction -- 4.1.2 Convection -- 4.1.2.1 Heat Transfer by Free Convection from Vertical and Horizontal Flat Surfaces -- 4.1.2.2 Heat Transfer by Free Convection from Horizontal Pipes -- 4.1.2.3 Heat Transfer by Forced Convection through a Tube -- 4.1.2.4 Heat Transfer by Forced Convection over a Bank of Tubes -- 4.1.2.5 Heat Transfer by Condensation outside a Tube -- 4.1.2.6 Heat Transfer by Boiling outside a Tube -- 4.1.2.7 Heat Transfer by Boiling inside a Tube -- 4.1.2.8 Heat Transfer from Tubes with Fins -- 4.1.2.9 Overall Heat Transfer Coefficient for Heat Transfer between Fluids Separated by Tube Wall -- 4.1.2.10 Cocurrent, Countercurrent, and Cross Flow -- 4.1.2.11 Log Mean Temperature Difference -- 4.1.3 Radiation -- 4.1.3.1 Gas Radiation -- 4.1.3.2 Heat Loss from Insulated Pipe by Conduction, Convection, and Radiation -- 4.2 Heat Exchange Equipment -- 4.2.1 Shell and Tube Heat Exchangers -- 4.2.1.1 Removable Bundles -- 4.2.1.2 Nonremovable Bundles (Fixed Tubesheet) -- 4.2.1.3 Shell Types -- 4.2.1.4 Tube side -- 4.2.1.5 Tube Pitch and Pattern -- 4.2.1.6 Materials
4.2.1.7 Fluid Allocation -- 4.2.1.8 Double Pipe Heat Exchangers -- 4.2.1.9 Surface Condenser -- 4.2.1.10 Reboilers -- 4.2.2 Plate Heat Exchangers -- 4.2.3 Air-Cooled Exchangers -- 4.2.4 Heat Recovery Steam Generators (HRSGs) -- 4.2.5 Boilers and Fired Heaters -- 4.2.5.1 Fire Tube Design -- 4.2.5.2 Water Tube Design -- References -- 5 Mass Transfer and Chemical Reaction Equipment -- 5.1 Fundamentals of Mass Transfer -- 5.1.1 Molecular Diffusion -- 5.1.2 Convective Transport -- 5.1.3 Adsorption -- 5.2 Gas-Liquid Systems -- 5.2.1 Types of Mass Transfer Operations -- 5.2.1.1 Absorption -- 5.2.1.2 Stripping -- 5.2.1.3 Distillation -- 5.2.1.4 Energy Saving Measures -- 5.2.1.5 Stage Efficiency -- 5.2.1.6 Azeotropes -- 5.2.1.7 Extraction -- 5.2.1.8 Extractive Distillation -- 5.2.1.9 Humidification and Cooling Towers -- 5.2.2 Types of Columns -- 5.2.2.1 Tray Columns -- 5.2.2.2 Packed Columns -- 5.2.2.3 Spray Columns -- 5.2.3 Column Sizing -- 5.2.3.1 Key Components -- 5.2.3.2 Column Specifications -- 5.2.3.3 Reflux Ratio and Number of Stages -- 5.2.3.4 Feed Tray Location -- 5.2.3.5 Equilibrium Stage Approach -- 5.2.3.6 Rate-based Approach -- 5.2.3.7 Overall Column Height -- 5.2.4 Column Diameter and Pressure Drop -- 5.2.4.1 Tray Columns -- 5.2.4.2 Packed Columns -- 5.3 Fluid-Solid Systems -- 5.3.1 Adsorbers -- 5.3.1.1 Transport Model -- 5.3.1.2 Equilibrium Model -- 5.3.2 Catalytic Reactors -- 5.3.2.1 Packed Bed Reactors -- 5.3.2.2 Fluidized Bed Reactors -- 5.3.2.3 Slurry Bed Reactors -- 5.3.2.4 Advanced Reactors -- 5.3.2.5 Reactor Models -- References -- 6 Prime Movers -- 6.1 Gas Turbines -- 6.1.1 Principles of Operation -- 6.1.2 Combustor and Air Emissions -- 6.1.3 Start-Up and Load Control -- 6.1.4 Performance Characteristics -- 6.1.5 Fuel Types -- 6.1.6 Technology Developments -- 6.1.6.1 Firing Temperature -- 6.1.6.2 Compression Ratio and Intercooling
6.1.6.3 Inlet Air Fogging -- 6.1.6.4 Pressure Gain Combustor -- 6.1.6.5 Trapped Vortex Combustor -- 6.1.6.6 Catalytic Combustor -- 6.2 Steam Turbines -- 6.2.1 Principles of Operation -- 6.2.1.1 Impulse versus Reaction Blades -- 6.2.2 Load Control -- 6.2.3 Performance Characteristics -- 6.2.4 Technology Developments -- 6.3 Reciprocating Internal Combustion Engines -- 6.3.1 Principles of Operation -- 6.3.1.1 Two Stroke Cycle Engines -- 6.3.1.2 Four Stroke Cycle Engine -- 6.3.1.3 Supercharging and Turbocharging -- 6.3.2 Air Emissions -- 6.3.3 Start-up -- 6.3.4 Performance Characteristics -- 6.3.5 Fuel Types -- 6.3.5.1 Cetane Number -- 6.3.5.2 Octane Number -- 6.4 Hydraulic Turbines -- 6.4.1 Process Industry Applications -- 6.4.2 Hydroelectric Power Plant Applications -- References -- 7 Systems Analysis -- 7.1 Design Basis -- 7.1.1 Fuel or Feedstock Specifications -- 7.1.2 Mode of Heat Rejection -- 7.1.3 Ambient Conditions -- 7.1.4 Other Site-Specific Considerations -- 7.1.5 Environmental Emissions Criteria -- 7.1.6 Capacity Factor -- 7.1.7 Off-Design Requirements -- 7.2 System Configuration -- 7.3 Exergy and Pinch Analyses -- 7.3.1 Exergy Analysis -- 7.3.2 Pinch Analysis -- 7.4 Process Flow Diagrams -- 7.5 Dynamic Simulation and Process Control -- 7.5.1 Dynamic Simulation -- 7.5.2 Automatic Process Control -- 7.6 Cost Estimation and Economics -- 7.6.1 Total Plant Cost -- 7.6.1.1 Direct Field Material Costs -- 7.6.1.2 Direct Field Labor Costs -- 7.6.1.3 Subcontractor Costs -- 7.6.1.4 Indirect Field Costs -- 7.6.1.5 Home Office Costs -- 7.6.1.6 Other Miscellaneous Costs -- 7.6.1.7 Capacity-Factored Estimate -- 7.6.1.8 Parametric Cost Estimation -- 7.6.1.9 Equipment-Factored Estimates -- 7.6.1.10 Detailed-Cost Estimation -- 7.6.2 Economic Analysis -- 7.6.2.1 Organization and Start-Up Costs -- 7.6.2.2 Working Capital
7.6.2.3 Operating and Maintenance Costs -- 7.6.2.4 Cost of Product -- 7.6.2.5 Simple Payback Period Calculation -- 7.7 Life Cycle Assessment -- Reference -- 8 Rankine Cycle Systems -- 8.1 Basic Rankine Cycle -- 8.2 Addition of Superheating -- 8.3 Addition of Reheat -- 8.4 Addition of Economizer and Regenerative Feedwater Heating -- 8.5 Supercritical Rankine Cycle -- 8.6 The Steam Cycle -- 8.7 Coal-Fired Power Generation -- 8.7.1 Coal-Fired Boilers -- 8.7.2 Emissions and Control -- 8.7.2.1 Particulate Matter -- 8.7.2.2 SOx -- 8.7.2.3 NOx -- 8.7.2.4 CO and Organic Compounds -- 8.7.2.5 Trace Metals -- 8.7.2.6 Halogens -- 8.7.2.7 Greenhouse Gases -- 8.7.3 Description of a Large Supercritical Steam Rankine Cycle -- 8.7.3.1 Boiler -- 8.7.3.2 Steam Turbine -- 8.8 Plant-Derived Biomass-Fired Power Generation -- 8.8.1 Feedstock Characteristics -- 8.8.2 Biomass-Fired Boilers -- 8.8.3 Cofiring Biomass in Coal-Fired Boilers -- 8.8.4 Emissions -- 8.9 Municipal Solid Waste Fired Power Generation -- 8.9.1 MSW-Fired Boilers -- 8.9.2 Emissions Control -- 8.9.2.1 Dry Scrubbing Process -- 8.9.2.2 Wet Scrubbing Process -- 8.9.2.3 Refuse-Derived Fuel -- 8.10 Low-Temperature Cycles -- 8.10.1 Organic Rankine Cycle (ORC) -- 8.10.1.1 Selection of the Working Fluid -- References -- 9 Brayton-Rankine Combined Cycle Systems -- 9.1 Combined Cycle -- 9.1.1 Gas Turbine Cycles for Combined Cycles -- 9.1.2 Steam Cycles for Combined Cycles -- 9.2 Natural Gas-Fueled Plants -- 9.2.1 Description of a Large Combined Cycle -- 9.2.2 NOx Control -- 9.2.3 CO and Volatile Organic Compounds Control -- 9.2.4 CO2 Emissions Control -- 9.2.4.1 Precombustion Control -- 9.2.4.2 Postcombustion Control -- 9.2.5 Characteristics of Combined Cycles -- 9.3 Coal and Biomass Fueled Plants -- 9.3.1 Gasification -- 9.3.2 Gasifier Feedstocks -- 9.3.3 Key Technologies in IGCC Systems
9.3.3.1 Air Separation Technology
Provides an introduction to energy systems going on to describe various forms of energy sources Provides a comprehensive and a fundamental approach to the study of sustainable fuel conversion for the generation of electricity and for coproducing synthetic fuels and chemicals Covers the underlying principles of physics and their application to engineering including thermodynamics of combustion and power cycles, fluid flow, heat transfer, and mass transfer Details the coproduction of fuels and chemicals including key equipment used in synthesis and specific examples of coproduction in integrated gasification combined cycles are presented Presents an introduction to renewables and nuclear energy, including a section on electrical grid stability and is included due to the synergy of these energy plants with fossil-fueled plants
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Rao, Ashok Sustainable Energy Conversion for Electricity and Coproducts : Principles, Technologies, and Equipment Somerset : John Wiley & Sons, Incorporated,c2015 9781118396629
主題 Electric power production -- Energy conservation.;Electric power-plants -- Equipment and supplies.;Renewable energy sources.;Fuel trade -- By-products.;Chemicals
Electronic books