Descript |
1 online resource (636 pages) |
|
text txt rdacontent |
|
computer c rdamedia |
|
online resource cr rdacarrier |
Note |
Cover -- Active Faults of the World -- Title -- Copyright -- Contents -- Preface: Introduction and historical perspective -- 1: Methods and background -- 1.1 Introduction -- 1.2 Tectonics -- 1.2.1 Introduction -- 1.2.2 Plate tectonics -- 1.3 Structural geology -- 1.4 Seismic waves -- 1.4.1 Introduction -- 1.4.2 Orientation of fault plane based on earthquakes -- 1.4.3 Magnitude scales -- 1.5 Tectonic geodesy -- 1.5.1 Terrestrial geodesy -- 1.5.2 Space geodesy -- 1.5.3 InSAR -- 1.5.4 In situ stress -- 1.6 Earthquake geology at mainshock depths -- 1.7 Quaternary dating techniques -- 1.7.1 Introduction -- 1.7.2 Luminescence dating -- 1.7.3 Surface-exposure dating with cosmogenic nuclides -- 1.8 Tectonic geomorphology -- 1.8.1 Introduction -- 1.8.2 Scarp degradation -- 1.8.3 Mountain-front sinuosity -- 1.9 Weathering and soils -- 1.10 Paleoseismology -- 1.10.1 Introduction -- 2: Alaska, Canada, Cascadia, and Eastern North America -- 2.1 Introduction: the Pacific-North America plate boundary -- 2.2 Alaska -- 2.2.1 Introduction -- 2.2.2 Aleutian subduction zone -- 2.2.3 Yakutat collision zone -- 2.2.4 Alaskan crustal faults -- 2.3 Queen Charlotte-Fairweather transform boundary -- 2.4 Northwest Canada -- 2.5 Cascadia -- 2.5.1 Crustal earthquakes -- 2.6 Earthquakes in eastern North America -- 2.6.1 Introduction -- 2.6.2 New Madrid seismic zone -- 2.6.3 Other seismic zones in eastern North America -- 2.6.4 Continental earthquakes with surface rupture -- 2.6.5 Concluding remarks -- 2.7 Summary -- 2.7.1 Siletzia: A large igneous province (LIP) in the hanging wall -- 2.7.2 Subduction without a W-B zone -- 2.7.3 Bookshelf tectonics -- 2.7.4 Comparison of Aleutian and Cascadia subduction zones -- 2.7.5 Subduction, coupling, and arc volcanoes -- 3: San Andreas system and Basin and Range -- 3.1 Introduction |
|
3.2 San Andreas fault system: introduction and historical background -- 3.3 Mendocino Transform and Triple Junction -- 3.4 Northern San Andreas fault -- 3.5 San Francisco Bay region -- 3.6 Creeping SAF and Parkfield -- 3.7 Southern San Andreas fault -- 3.8 San Jacinto fault -- 3.9 Other right-lateral strike-slip faults west of the San Jacinto fault -- 3.9.1 Summary statement -- 3.10 Left-lateral and reverse faults west of the SAF -- 3.11 Los Angeles fold-and-thrust belt -- 3.12 Ventura basin -- 3.13 Southern Coast Ranges -- 3.14 Baja California and Gulf of California -- 3.15 Left-lateral faults east of the SAF -- 3.16 Eastern boundary faults of the Sierran microplate -- 3.16.1 Introduction -- 3.16.2 Eastern California shear zone -- 3.17 Great Basin -- 3.17.1 Basin and Range normal-faulted province -- 3.17.2 Other Basin and Range subprovinces -- 3.17.3 Rio Grande Rift -- 3.17.4 Southern Basin and Range -- 3.18 The Oroville earthquakes -- 3.19 Summary -- 3.19.1 Importance of studying San Andreas fault and Basin and Range -- 3.19.2 Birth of a strike-slip fault -- 3.19.3 Three time frames to establish rates of faulting -- 3.19.4 Paleoseismology taken to the next level -- 3.19.5 Determining offsets on a migrating triple junction -- 3.19.6 Restraining bends and earthquakes -- 3.19.7 Strain partitioning in Los Angeles -- 4: Caribbean Plate and Middle America subduction zone -- 4.1 Overview -- 4.2 Northern boundary -- 4.3 Lesser Antilles subduction zone -- 4.4 Northern South America -- 4.5 Central America -- 4.6 Mexican subduction zone -- 4.7 Summary -- 4.7.1 Importance of strain partitioning -- 4.7.2 Flipped subduction zone or bivergent crustal wedge? -- 4.7.3 Westward-propagating earthquakes -- 4.7.4 Flat-slab subduction -- 4.7.5 End of a plate-boundary fault -- 4.7.6 Paleoseismology of faulted limestone platforms |
|
4.7.7 Seismic hazard of the Central American volcanic depression -- 4.7.8 Seismic hazard to large cities in the developing world -- 5: South America -- 5.1 Introduction -- 5.2 North Andean Block -- 5.3 Central Andes -- 5.4 Southern Andes -- 5.5 South America East of the Andes -- 5.6 Summary -- 5.6.1 Normally dipping vs. flat-slab subduction -- 5.6.2 How long have the flat slabs been flat? -- 5.6.3 Uplift of the Altiplano and Puna plateaus -- 5.6.4 North-south extension and the effect of high topography -- 5.6.5 Maximum size of earthquakes at the Nazca-South America plate boundary -- 6: Africa, Arabia, and Western Europe -- 6.1 Introduction -- 6.2 East African Rift Valleys -- 6.3 Ethiopian Rift and the Afar Triangle -- 6.4 Earthquakes of the African continental shield -- 6.5 The Africa-Eurasia plate boundary west of Gibraltar -- 6.6 Iberia and the Great 1755 Lisbon Earthquake -- 6.7 The Atlas ranges of North Africa -- 6.8 Italy -- 6.9 Adria and the Alps -- 6.10 European Rift System and the 1356 Basel, Switzerland, earthquake -- 6.11 Scandinavia -- 6.12 Scotland -- 6.13 Iceland -- 6.14 Summary -- 6.14.1 Earthquakes and spreading centers -- 6.14.2 Earthquake hazard to large cities in the Rift Valleys -- 6.14.3 Earthquake hazard of single-event fault scarps -- 6.14.4 Seismotectonics of deglaciation -- 7: Eastern Mediterranean, the Caucasus, and the Middle East -- 7.1 Introduction -- 7.2 Carpathian Ranges and the Pannonian Basin -- 7.3 Greece and the Southern Balkans -- 7.3.1 Introduction -- 7.3.2 Hellenic subduction zone -- 7.3.3 South Aegean normal fault region -- 7.3.4 The Gulf of Corinth graben and other east-west faults -- 7.3.5 Reverse faults of Epirus and the Ionian Islands -- 7.3.6 Earthquakes in the slow lane: normal faults of Northern Greece and Bulgaria -- 7.3.7 The North Anatolian fault (NAF) in the Northern Aegean Sea -- 7.4 Cyprus and Turkey |
|
7.4.1 Introduction -- 7.4.2 North Anatolian fault -- 7.4.3 East Anatolian fault -- 7.4.4 Other Anatolian faults -- 7.5 Dead Sea fault (DSF) -- 7.5.1 Introduction -- 7.5.2 Gulf of Aqaba and Araba Valley -- 7.5.3 The Dead Sea Basin: tales from the Bible -- 7.5.4 The Dead Sea fault from Jericho to the Sea of Galilee and Hula Basin -- 7.5.5 The restraining bend -- 7.5.6 Northern segment in Syria and Turkey -- 7.5.7 Source of tsunamis on the Levant and Israel coast -- 7.6 The Caucasus and surrounding areas -- 7.7 The Caspian Sea, the Kopeh Dagh, and Iran -- 7.7.1 Turkmenistan and the Kopeh Dagh -- 7.7.2 Iran: introduction -- 7.7.3 Alborz Mountains -- 7.7.4 Central Iran -- 7.7.5 Zagros Mountains -- 7.8 Summary -- 7.8.1 The 2000 forecast of the next earthquake to strike İstanbul -- 7.8.2 Implications of 60 000 years of paleoseismology on the Dead Sea fault -- 7.8.3 Are Mediterranean normal faults listric? -- 7.8.4 Athens, 1999: the unexpected earthquake -- 7.8.5 Subduction, Mediterranean style -- 7.8.6 Desert cities, earthquakes, and water -- 8: India, the Himalaya, Mainland China, and Central Asia -- 8.1 Introduction -- 8.2 Makran subduction zone -- 8.3 India Plate -- 8.3.1 Introduction -- 8.3.2 Indian shield -- 8.3.3 Western transform boundary: the Chaman fault system -- 8.3.4 Eastern transform boundary: Indo-Burman Ranges and the Sagaing fault -- 8.4 Himalaya -- 8.4.1 Introduction -- 8.4.2 Tectonic setting -- 8.4.3 Convergence rates -- 8.4.4 Seismicity -- 8.5 Tibet -- 8.5.1 Southern Tibet -- 8.5.2 Faults of eastern Tibetan Plateau -- 8.6 Earthquakes along the Silk Road -- 8.6.1 Hexi Corridor and Qilian Shan -- 8.7 Grabens around the Ordos Plateau -- 8.7.1 Introduction -- 8.8 Northeast China -- 8.8.1 Introduction -- 8.8.2 Tan-Lu fault -- 8.8.3 Faults near Beijing -- 8.9 Central Asia -- 8.9.1 Hindu Kush, Pamirs, and Karakoram ranges |
|
8.9.2 Active tectonics of the Celestial Mountains -- 8.9.3 Strike-slip faults in the Altay Ranges -- 8.10 Baikal Rift -- 8.11 Summary -- 8.11.1 SCR earthquakes -- 8.11.2 Giant continental subduction-zone earthquakes -- 8.11.3 Large cities, small countries, and dangerous faults -- 8.11.4 Tsunami hazard in the Bay of Bengal -- 8.11.5 East Asian superquakes -- 9: Japan and the Western Pacific -- 9.1 Introduction -- 9.2 Tectonic setting -- 9.3 Kuril subduction zone -- 9.4 Northeast Japan subduction zone and the 2011 Tohoku-oki earthquake -- 9.5 Okhotsk-Amurian plate boundary -- 9.6 Itoigawa-Shizuoka Tectonic Line (ISTL) -- 9.7 Southwest Japan: the Nankai subduction zone -- 9.7.1 Introduction and tectonic expression of the Nankai plate boundary -- 9.7.2 A thirteen-century record of Nankai subduction -- 9.7.3 Summary of 1944 Tonankai and 1946 Nankaido earthquakes -- 9.7.4 Izu collision zone and Sagami Trough -- 9.7.5 Crustal faults of southwest Japan -- 9.7.6 Ryukyu subduction zone -- 9.8 Taiwan -- 9.8.1 Historical background -- 9.8.2 Tectonic setting -- 9.9 Summary -- 9.9.1 The 2011 Tohoku-oki earthquake and Maximum Considered Earthquakes (MCE) -- 9.9.2 Are Nankai earthquakes periodic? -- 9.9.3 Cusps versus flat-slab subduction -- 9.9.4 Slip-rate budgets and characteristic earthquakes -- 10: Southeast Asia, Australia, New Zealand, and Pacific Islands -- 10.1 Introduction -- 10.2 Sunda Plate -- 10.2.1 Introduction -- 10.2.2 Red River fault -- 10.2.3 Active faults in the Golden Triangle: northern Laos and Thailand and eastern Myanmar -- 10.2.4 Other faults in the Sunda Plate -- 10.3 Java, Sumatra, and Andaman subduction zone -- 10.3.1 Introduction -- 10.3.2 Sumatran fault and other forearc faults -- 10.3.3 The Sumatran subduction zone -- 10.3.4 Java subduction zone -- 10.3.5 Timor to Banda Arc -- 10.4 The Philippines, Sulawesi, and the Moluccas |
|
10.4.1 Introduction |
|
The first worldwide survey of active earthquake faults, providing an important basis for protecting threatened cities in the developing world |
|
Description based on publisher supplied metadata and other sources |
|
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries |
Link |
Print version: Yeats, Robert Active Faults of the World
Cambridge : Cambridge University Press,c2012 9780521190855
|
Subject |
Faults (Geology);Geology, Structural
|
|
Electronic books
|
|