Author Martin, Francis
Title Molecular Mycorrhizal Symbiosis
Imprint New York : John Wiley & Sons, Incorporated, 2016
©2017
book jacket
Edition 1st ed
Descript 1 online resource (553 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- Title Page -- Copyright Page -- Contents -- List of contributors -- Foreword -- Preface -- Section 1 Structure and phylogeny of mycorrhizal symbioses -- Chapter 1 Origins of the mycorrhizal symbioses -- 1.1 Introduction -- 1.2 Extant mycorrhizal diversity -- 1.3 Early land plants to early forests -- 1.4 AM symbioses in early (Palaeozoic) land plants -- 1.5 Evolution of the mycorrhizal symbioses -- 1.6 Perspectives for bridging paleomycology and genomics -- 1.7 Acknowledgments -- 1.8 References -- Chapter 2 Reappraising the origin of mycorrhizas -- 2.1 Introduction -- 2.2 Fungal symbioses in non-vascular plants -- 2.3 Fungal symbioses in vascular plants -- 2.4 Fungal symbioses in extinct plants -- 2.5 Functioning of plant-Mucoromycotina symbioses -- 2.6 Conclusions -- 2.7 References -- Chapter 3 The structure of arbuscular mycorrhizas: A cell biologist's view -- 3.1 Introduction -- 3.2 The active role of epidermal versus cortical cells in root colonization -- 3.3 The appearance of a novel cell compartment: the symbiotic interface -- 3.4 Bricks of the plant wall fill the symbiotic interface -- 3.5 Genetics at the root of the symbiotic interface -- 3.6 Molecular traffic at the symbiotic interface -- 3.7 The plant cell nucleus: a driver of the colonization process -- 3.8 Conclusions -- 3.9 References -- Chapter 4 Structure and development of ectomycorrhizal roots -- 4.1 Introduction -- 4.2 Early-stage development of ectomycorrhizae -- 4.3 Development of a functioning ectomycorrhiza -- 4.4 The dynamics in ectomycorrhizal development -- 4.5 Conclusions: Summary and outlook -- 4.6 References -- Chapter 5 Structure and development of orchid mycorrhizas -- 5.1 Introduction -- 5.2 Attraction of fungal hyphae to the orchid -- 5.3 Initial contact between orchid and fungus -- 5.4 Initial colonization of orchid tissues by OMF
5.5 Growth of fungal hyphae through orchid tissues -- 5.6 Colonization of cortical cells -- 5.7 Nutrient exchange in OM -- 5.8 Mycorrhizal differences between terrestrial and epiphytic orchids -- 5.9 Mycorrhizal differences between protocorms, seedlings and adult plants -- 5.10 Seasonal or environmental effects on mycorrhizal formation -- 5.11 Ptyophagy in obligate mycoheterotrophic orchids -- 5.12 Conclusions -- 5.13 Acknowledgments -- 5.14 References -- Section 2 Cellular, genetic and molecular mechanisms in the establishment of mycorrhizal symbioses -- Chapter 6 The evolution of the mycorrhizal lifestyles - a genomic perspective -- 6.1 Introduction -- 6.2 The first sequenced mycorrhizal fungal genomes -- 6.3 More genomes needed: Large-scale genomics initiatives for mycorrhizal fungi -- 6.4 Diversity and evolution of decay capabilities in mycorrhizal lineages -- 6.5 The symbiotic transcriptome of mycorrhizal fungi -- 6.6 Conclusions -- 6.7 Acknowledgments -- 6.8 References -- Chapter 7 Strigolactones and lipo-chitooligosaccharides as molecular communication signals in the arbuscular mycorrhizal symbiosis -- 7.1 Introduction -- 7.2 Strigolactones as rhizospheric signals for the AM symbiosis -- 7.3 Chitin-derived molecules as early signals produced by AM fungi -- 7.4 Plant receptors for AM fungal signal molecules -- 7.5 Plant signaling pathways activated by AM fungal signal molecules -- 7.6 AM fungi also produce short chain chitin oligomers -- 7.7 What are the roles of Myc-LCOs and Myc-COs? -- 7.8 Conclusions and perspectives -- 7.9 Acknowledgments -- 7.10 References -- Chapter 8 Calcium signaling and transcriptional regulation in arbuscular mycorrhizal symbiosis -- 8.1 Introduction -- 8.2 Symbiotic calcium signaling -- 8.3 Perception and decoding of calcium oscillations -- 8.4 Transcriptional regulators in AM signaling
8.5 Transcriptional reprogramming of host plant cells during arbuscular mycorrhizal symbiosis (AMS) -- 8.6 Concluding remarks -- 8.7 References -- Chapter 9 Signaling pathways driving the development of ectomycorrhizal symbiosis -- 9.1 Introduction -- 9.2 Early recognition events -- 9.3 Fungal accommodation within plant tissues -- 9.4 Hormone-based communication -- 9.5 Effector-based communication -- 9.6 CO2 and symbiosis -- 9.7 Conclusion -- 9.8 Acknowledgments -- 9.9 References -- Section 3 Physiology, including carbon and nutrient exchange between symbionts -- Chapter 10 Carbohydrate metabolism in ectomycorrhizal symbiosis -- 10.1 Introduction -- 10.2 The fungal partner -- 10.3 The host plant -- 10.4 Summary and outlook -- 10.5 References -- Chapter 11 Nitrogen acquisition in ectomycorrhizal symbiosis -- 11.1 Introduction -- 11.2 Nitrogen availability in soil -- 11.3 The role of extramatrical mycelium in N acquisition -- 11.4 Organic N acquisition -- 11.5 Functional diversity for N uptake -- 11.6 The pathways of N assimilation -- 11.7 The plant benefit -- 11.8 Concluding remarks -- 11.9 Acknowledgments -- 11.10 References -- Chapter 12 Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis -- 12.1 Introduction -- 12.2 Pi uptake and compartmentalization -- 12.3 Long-distance Pi translocation through hyphae -- 12.4 Pi transfer from the fungi to the host - the symbiotic interface -- 12.5 Perspectives -- 12.6 Acknowledgements -- 12.7 References -- Chapter 13 Primary metabolism in arbuscular mycorrhizal symbiosis: Carbon, nitrogen and sulfur -- 13.1 Introduction -- 13.2 Carbon assimilation and metabolism in source leaves -- 13.3 Carbon metabolism in sink organs of the shoot -- 13.4 Carbon metabolism in roots -- 13.5 Carbon metabolism during AM fungal development
13.6 Nitrogen and sulfur metabolism during AM fungal asymbiotic and presymbiotic development -- 13.7 Nitrogen and sulfur metabolism during AM fungal symbiotic development -- 13.8 Nitrogen and sulfur metabolism in roots -- 13.9 Nitrogen and sulfur metabolism in leaves -- 13.10 Nitrogen and sulfur metabolism in fruits -- 13.11 Gaps in our knowledge -- 13.12 References -- Chapter 14 The transportome of mycorrhizal systems -- 14.1 Introduction -- 14.2 Carbon transport from plant leaves to the fungal partner -- 14.3 Nitrogen transport in mycorrhizal roots -- 14.4 Phosphate transport systems involved in mycorrhizal uptake pathway -- 14.5 Plant sulfur nutrition in mycorrhizal symbiosis -- 14.6 Mycorrhizal potassium nutrition mediated by transporters and channels -- 14.7 Aquaporins as water flux facilitators in mycorrhizal associations -- 14.8 And still more transport systems - microelements in mycorrhizal interactions -- 14.9 Conclusion -- 14.10 References -- Chapter 15 Soil organic matter decomposition mechanisms in ectomycorrhizal fungi -- 15.1 Introduction -- 15.2 Litter decomposition in saprotrophic fungi -- 15.3 SOM decomposition in ECM fungi -- 15.4 Mobilization of nutrients -- 15.5 Ecological aspects -- 15.6 Conclusions -- 15.7 Acknowledgments -- 15.8 References -- Chapter 16 Homeostasis of trace elements in mycorrhizal fungi -- 16.1 Introduction -- 16.2 How do mycorrhizal fungi maintain cellular trace element homeostasis? -- 16.3 Facing the challenge of oxidative stress, damage and repair -- 16.4 Trace element management at a higher organizational level -- 16.5 Natural variation in trace element homeostasis of mycorrhizal fungi -- 16.6 Acknowledgments -- 16.7 References -- Section 4 Population and community ecology, and environmental genomics -- Chapter 17 Molecular identification of fungi -- 17.1 Introduction -- 17.2 Early molecular techniques
17.3 High-throughput methods -- 17.4 PCR-free technologies and metagenomes -- 17.5 Addressing the "active" community -- 17.6 Technological biases -- 17.7 Identification of individuals -- 17.8 DNA barcodes and metabarcodes -- 17.9 Clustering -- 17.10 Identification -- 17.11 Conclusions and perspectives -- 17.12 Acknowledgments -- 17.13 References -- Chapter 18 Molecular technologies applied to the ecology of ectomycorrhizal communities -- 18.1 Introduction -- 18.2 Progress and pitfalls in molecular technologies -- 18.3 Richness and structure of ECM fungal communities assessed by meta‐omics -- 18.4 New highlights on microbiomes associated with ECM fungi -- 18.5 Advances in the understanding of the role of ECM fungi in forest ecosystem function -- 18.6 Truffles as example of using high‐throughput molecular methods to facilitate ECM fungi cultivation -- 18.7 Conclusions -- 18.8 Acknowledgments -- 18.9 References -- Chapter 19 The biogeography of ectomycorrhizal fungi - a history of life in the subterranean -- 19.1 Why study the biogeography of ectomycorrhizal fungi? -- 19.2 Ectomycorrhizal biogeography in the pre‐molecular era -- 19.3 The advance of molecular phylogeography -- 19.4 Ectomycorrhizal communities in space -- 19.5 Dispersal limitation -- 19.6 Spatial patterns of diversity -- 19.7 EMF across time and space -- 19.8 Conclusions -- 19.9 References -- Chapter 20 Spatial ecology of ectomycorrhizal fungal communities -- 20.1 Introduction -- 20.2 Organismal challenges to understanding spatial ecology of ECM fungi -- 20.3 ECM spatial ecology - current knowledge -- 20.4 Importance of preliminary investigations - getting the scale right -- 20.5 Advances in spatial statistical techniques -- 20.6 Future directions and outstanding research questions -- 20.7 Conclusions -- 20.8 Acknowledgments -- 20.9 References
Chapter 21 Fungal ecology in boreal forest ecosystems
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Martin, Francis Molecular Mycorrhizal Symbiosis New York : John Wiley & Sons, Incorporated,c2016 9781118951415
Subject Plant-fungus relationships
Electronic books