Record:   Prev Next
書名 Hydrocarbon and lipid microbiology protocols : statistics, data analysis, bioinformatics and modelling / Terry J. McGenity, Kenneth N. Timmis, Balbina Nogales, editors
出版項 Berlin : Springer, 2016
國際標準書號 9783662493106
3662493101
book jacket
說明 1 online resource (xii, 180 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
系列 Springer protocols handbooks, 1949-2448
Springer protocols handbooks
附註 Includes bibliographical references
Online resource; title from PDF title page (SpringerLink, viewed August 18, 2016)
This volume covers protocols for in-silico approaches to hydrocarbon microbiology, including the selection and use of appropriate statistical tools for experimental design replication, data analysis, and computer-assisted approaches to data storage, management and utilisation. The application of algorithms to analyse the composition and function of microbial communities is presented, as are prediction tools for biodegradation and protein interactions. The basics of a major open-source programming language, Python, are explained
Introduction to computer-assisted analysis in lipid and hydrocarbon microbiology -- Application of Ecological Network Theory -- Statistical tools for data analysis -- Statistical tools for study design and replication -- MG-RAST, a metagenomics service for analysis of microbial community structure and function -- Using QIIME to evaluate the microbial communities within hydrocarbon environments -- Biodegradation Prediction Tools -- Predicting protein interactions -- Syntax and Semantics of Coding in Python -- Protocols for calculating reaction kinetics and thermodynamics -- Modelling the environmental fate of hydrocarbons during bioremediation.
鏈接 Original 9783662493090 3662493098 (OCoLC)933719386
主題 Lipids -- Laboratory manuals
Lipids -- Biotechnology -- Laboratory manuals
Hydrocarbons -- Laboratory manuals
Electronic books
Laboratory Manuals
Alt Author McGenity, Terry J. editor
Timmis, K. N., editor
Nogales, Balbina, editor
Record:   Prev Next