LEADER 00000nam a22004813i 4500 
001    EBC919133 
003    MiAaPQ 
005    20200713055220.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2012    xx      o     ||||0 eng d 
020    9789814401012|q(electronic bk.) 
020    |z9789814401005 
035    (MiAaPQ)EBC919133 
035    (Au-PeEL)EBL919133 
035    (CaPaEBR)ebr10563477 
035    (CaONFJC)MIL505495 
035    (OCoLC)793374377 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QA403.3 -- .T36 2012eb 
082 0  515.243 
100 1  Tang, Yuan Yan 
245 10 Document Analysis and Recognition with Wavelet and Fractal
       Theories 
264  1 Singapore :|bWorld Scientific Publishing Co Pte Ltd,|c2012
264  4 |c©2012 
300    1 online resource (373 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
490 1  World Scientific Series On The Economics Of Climate Change
       ;|vv.79 
505 0  Intro -- Contents -- Preface -- Chapter 1 Basic Concepts 
       of Document Analysis and Understanding -- 1.1 
       Introduction. -- 1.2 Basic Model of Document Processing --
       1.3 Document Structures -- 1.3.1 Strength of Structure -- 
       1.3.2 Geometric Structure -- 1.3.2.1 Geometric Complexity 
       -- 1.3.3 Logical Structure -- 1.4 Document Analysis -- 
       1.4.1 Hierarchical Methods -- 1.4.1.1 Top-Down Approach --
       1.4.1.2 Bottom-Up Approach -- 1.4.2 No-HierarchicalMethods
       -- 1.4.2.1 Modified Fractal Signature -- 1.4.2.2 Order 
       Stochastic Filtering -- 1.4.3 Web Document Analysis -- 1.5
       Document Understanding -- 1.5.1 Document Understanding 
       Based on Tree Transformation -- 1.5.2 Document 
       Understanding Based on Formatting Knowledge -- 1.5.3 
       Document Understanding Based on Description Language -- 
       1.6 Form Document Processing -- 1.6.1 Characteristics of 
       Form Documents -- 1.6.2 Wavelet Transform Approach -- 
       1.6.3 Approach Based on Form Description Language -- 1.6.4
       Form Document Processing Based on Form Registration -- 
       1.6.5 Form Document Processing System -- 1.7 Character 
       Recognition and Document Image Processing -- 1.7.1 
       Handwritten and Printed Character Recognition -- 1.7.1.1 
       Extracting Multiresolution Features in Recognition of 
       Handwritten Numerals with 2-D Haar Wavelet -- 1.7.1.2 
       Recognition of Printed Kannada Text in Indian Languages --
       1.7.1.3 Wavelet Descriptors of Handprinted Characters -- 
       1.7.2 Document Image Analysis Based on Multiresolution 
       Hadamard Representation (MHR) -- 1.8 Major Techniques -- 
       1.8.1 Hough Transform. -- 1.8.2 Techniques for Skew 
       Detection -- 1.8.3 Projection Profile Cuts -- 1.8.4 Run-
       Length Smoothing Algorithm (RLSA) -- 1.8.5 Neighborhood 
       Line Density (NLD) -- 1.8.6 Connected Components Analysis 
       (CCA) -- 1.8.7 Crossing Counts -- 1.8.8 Form Definition 
       Language (FDL) -- 1.8.9 Texture Analysis - Gabor Filters -
       - 1.8.10 Wavelet Transform 
505 8  1.8.11 Other Segmentation Techniques -- Chapter 2 Basic 
       Concepts of Fractal Dimension -- 2.1 Definitions of 
       Fractals -- 2.2 Hausdorff Dimension -- 2.2.1 Hausdorff 
       Measure -- 2.2.2 Hausdorff Dimension -- 2.2.3 Examples of 
       Computing Hausdorff Dimension -- 2.3 Box Computing 
       Dimension -- 2.3.1 Dimensions -- 2.3.2 Box Computing 
       Dimension -- 2.3.3 Minkowski Dimension -- 2.3.4 Properties
       of Box Counting Dimension -- 2.4 Basic Methods for 
       Calculating Dimensions -- Chapter 3 Basic Concepts of 
       Wavelet Theory -- 3.1 Continuous Wavelet Transforms -- 
       3.1.1 General Theory of Continuous Wavelet Transforms -- 
       3.1.2 The Continuous Wavelet Transform as a Filter -- 
       3.1.3 Description of Regularity of Signal by Wavelet -- 
       3.1.4 Some Examples of Basic Wavelets -- 3.2 
       Multiresolution Analysis (MRA) and Wavelet Bases -- 3.2.1 
       Multiresolution Analysis -- 3.2.1.1 Basic Concept of MRA -
       - 3.2.1.2 The Solution of Two-Scale Equation -- 3.2.2 The 
       Construction of MRAs -- 3.2.2.1 The Biorthonormal MRA -- 
       3.2.2.2 Examples of Constructing MRA -- 3.2.3 The 
       Construction of Biorthonormal Wavelet Bases -- 3.2.4 
       S.Mallat Algorithms -- Chapter 4 Document Analysis by 
       Fractal Dimension -- 4.1 Introduction. -- 4.2 Document 
       Analysis Based on Modified Fractal Signature (MFS) -- 
       4.2.1 Basic Idea of Modified Fractal Signature (MFS) -- 
       4.2.2 δ-Parallel Bodies -- 4.2.3 Blanket Technique to 
       Extract Fractal Feature -- 4.3 Algorithm of Modified 
       Fractal Signature (MFS) -- 4.3.1 Identification of 
       Different Blocks of Document by Fractal Signature -- 4.3.2
       Modified Fractal Signature (MFS) -- 4.4 Experiments -- 
       Chapter 5 Text Extraction by Wavelet Decomposition -- 5.1 
       Introduction -- 5.2 Wavelet Decomposition of Pseudo-Motion
       Functions -- 5.2.1 One Variable Case -- 5.2.2 Two 
       Variables Case -- 5.3 Segmentation of Different Areas of 
       Document Image -- 5.3.1 Segmentation of Areas of Different
       Frequency 
505 8  5.3.2 WDPM Algorithm -- 5.4 Experiments -- 5.4.1 Position 
       of License Plate -- 5.4.1.1 Choose of the Bases -- 5.4.1.2
       Experimental Results -- 5.4.2 Localization of Text Areas 
       of Document Images -- Chapter 6 Rotation Invariant by 
       Fractal Theory with Central Projection Transform (CPT) -- 
       6.1 Introduction -- 6.1.1 Rotations -- 6.1.2 Rotation 
       Invariants -- 6.1.3 Rotation Invariant of Discrete Images 
       -- 6.1.4 Rotation Invariants in Pattern Recognition -- 
       6.1.4.1 Boundary Curvature -- 6.1.4.2 Fourier Descriptors 
       -- 6.1.4.3 Zernik Moments -- 6.1.4.4 Neural Networks -- 
       6.2 Preprocessing and Central Projection Transform (CPT) -
       - 6.2.1 Preprocessing -- 6.2.2 Central Projection 
       Transform (CPT) -- 6.2.2.1 Basic Definitions of CPT -- 1. 
       Central Projection -- 2. Regional Central Projection (RCP)
       -- 6.2.2.2 Properties of CPT -- 1. Contour Unitization -- 
       2. Shape Invariance -- 6.2.2.3 Parallel Algorithm for CPT 
       -- 6.2.2.4 Contour Unfolding -- 6.3 Rotation Invariance 
       Based on Box Computing Dimension -- 6.3.1 Estimation of 
       the 1-D Fractal Dimension -- 6.3.2 Rotation Invariant 
       Signature (RIS) -- 6.4 Experiments -- 6.4.1 Rotation 
       Invariant Signature (RIS) Algorithm -- 6.4.1.1 Estimation 
       of the BCD -- 6.4.1.2 Extraction of Feature with Rotation 
       Invariant Property -- 6.4.2 Experimental Procedure and 
       Results -- Chapter 7 Wavelet-Based and Fractal-Based 
       Methods for Script Identification -- 7.1 Introduction -- 
       7.2 Wavelet-Based Approach -- 7.2.1 Image Decomposition by
       Multi-Scale Wavelet Transform -- 7.2.2 Wavelet-Based 
       Features -- 7.2.2.1 Average Energy of Document Image -- 
       7.2.2.2 Wavelet Energy Distribution Features (Fd) -- 
       7.2.2.3 Wavelet Energy Distribution Proportion Features 
       (Fdp) -- 7.2.3 Experiments -- 7.2.3.1 Distance Functions -
       - 7.2.3.2 Experimental Results -- 7.3 Fractal-Based 
       Approach -- 7.3.1 Algorithm -- 7.3.2 Experiments 
505 8  Chapter 8 Writer Identification Using Hidden Markov Model 
       in Wavelet Domain (WD-HMM) -- 8.1 Introduction -- 8.2 
       Hidden Markov Model and Relative Statistical Knowledge -- 
       8.2.1 Expectation Maximization (EM) Algorithm -- 8.2.2 
       Gaussian Mixture Model (GMM) and Expectation Maximization 
       (EM) for Gaussian Mixture Model (GMM) -- 8.2.3 Hidden 
       Markov Model -- 8.2.3.1 Basic Frame of HMM -- 8.2.3.2 
       Three Basic Problems for HMM -- 8.2.3.3 Important 
       Assumptions for HMM -- 8.3 Hidden Markov Models in Wavelet
       Domain -- 8.3.1 GMM Model for a Single Wavelet Coefficient
       -- 8.3.2 Independence Mixture Model -- 8.3.3 WD-HMM and EM
       for WD-HMM -- 8.4 Writer Identification Using WD-HMM -- 
       8.4.1 The Whole Procedure -- 8.4.2 Feature Extraction -- 
       8.4.3 Similarity Measurement -- 8.4.4 Performance 
       Evaluation -- 8.5 Experiments -- Bibliography -- Index 
520    Many phenomena around the research in document analysis 
       and understanding are much better described through the 
       powerful multiscale signal representations than by 
       traditional ways. From this perspective, the recent 
       emergence of powerful multiscale signal representations in
       general and fractal/wavelet basis representations in 
       particular, has been particularly timely. Indeed, out of 
       these theories arise highly natural and extremely useful 
       representations for a variety of important phenomena in 
       document analysis and understanding. This book presents 
       both the development of these new approaches as well as 
       their application to a number of fundamental problems of 
       interest to scientists and engineers in document analysis 
       and understanding 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Wavelets (Mathematics);Fractals 
655  4 Electronic books 
776 08 |iPrint version:|aTang, Yuan Yan|tDocument Analysis and 
       Recognition with Wavelet and Fractal Theories|dSingapore :
       World Scientific Publishing Co Pte Ltd,c2012
       |z9789814401005 
830  0 World Scientific Series On The Economics Of Climate Change
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=919133|zClick to View