LEADER 00000nam a22004813i 4500 
001    EBC4729653 
003    MiAaPQ 
005    20200713055443.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2016    xx      o     ||||0 eng d 
020    9781118951422|q(electronic bk.) 
020    |z9781118951415 
035    (MiAaPQ)EBC4729653 
035    (Au-PeEL)EBL4729653 
035    (CaPaEBR)ebr11291993 
035    (CaONFJC)MIL966925 
035    (OCoLC)958205579 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QK604.2.M92.M654 2017 
082 0  579.51785 
100 1  Martin, Francis 
245 10 Molecular Mycorrhizal Symbiosis 
250    1st ed 
264  1 New York :|bJohn Wiley & Sons, Incorporated,|c2016 
264  4 |c©2017 
300    1 online resource (553 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Title Page -- Copyright Page -- Contents -- List 
       of contributors -- Foreword -- Preface -- Section 1 
       Structure and phylogeny of mycorrhizal symbioses -- 
       Chapter 1 Origins of the mycorrhizal symbioses -- 1.1 
       Introduction -- 1.2 Extant mycorrhizal diversity -- 1.3 
       Early land plants to early forests -- 1.4 AM symbioses 
       in early (Palaeozoic) land plants -- 1.5 Evolution of the 
       mycorrhizal symbioses -- 1.6 Perspectives for bridging 
       paleomycology and genomics -- 1.7 Acknowledgments -- 1.8 
       References -- Chapter 2 Reappraising the origin 
       of mycorrhizas -- 2.1 Introduction -- 2.2 Fungal symbioses
       in non-vascular plants -- 2.3 Fungal symbioses in vascular
       plants -- 2.4 Fungal symbioses in extinct plants -- 2.5 
       Functioning of plant-Mucoromycotina symbioses -- 2.6 
       Conclusions -- 2.7 References -- Chapter 3 The structure 
       of arbuscular mycorrhizas: A cell biologist's view -- 3.1 
       Introduction -- 3.2 The active role of epidermal versus 
       cortical cells in root colonization -- 3.3 The appearance 
       of a novel cell compartment: the symbiotic interface -- 
       3.4 Bricks of the plant wall fill the symbiotic interface 
       -- 3.5 Genetics at the root of the symbiotic interface -- 
       3.6 Molecular traffic at the symbiotic interface -- 3.7 
       The plant cell nucleus: a driver of the colonization 
       process -- 3.8 Conclusions -- 3.9 References -- Chapter 4 
       Structure and development of ectomycorrhizal roots -- 4.1 
       Introduction -- 4.2 Early-stage development of 
       ectomycorrhizae -- 4.3 Development of a functioning 
       ectomycorrhiza -- 4.4 The dynamics in ectomycorrhizal 
       development -- 4.5 Conclusions: Summary and outlook -- 4.6
       References -- Chapter 5 Structure and development 
       of orchid mycorrhizas -- 5.1 Introduction -- 5.2 
       Attraction of fungal hyphae to the orchid -- 5.3 Initial 
       contact between orchid and fungus -- 5.4 Initial 
       colonization of orchid tissues by OMF 
505 8  5.5 Growth of fungal hyphae through orchid tissues -- 5.6 
       Colonization of cortical cells -- 5.7 Nutrient exchange 
       in OM -- 5.8 Mycorrhizal differences between terrestrial 
       and epiphytic orchids -- 5.9 Mycorrhizal differences 
       between protocorms, seedlings and adult plants -- 5.10 
       Seasonal or environmental effects on mycorrhizal formation
       -- 5.11 Ptyophagy in obligate mycoheterotrophic orchids --
       5.12 Conclusions -- 5.13 Acknowledgments -- 5.14 
       References -- Section 2 Cellular, genetic and molecular 
       mechanisms in the establishment of mycorrhizal symbioses -
       - Chapter 6 The evolution of the mycorrhizal lifestyles -
        a genomic perspective -- 6.1 Introduction -- 6.2 The 
       first sequenced mycorrhizal fungal genomes -- 6.3 More 
       genomes needed: Large-scale genomics initiatives for 
       mycorrhizal fungi -- 6.4 Diversity and evolution of decay 
       capabilities in mycorrhizal lineages -- 6.5 The symbiotic 
       transcriptome of mycorrhizal fungi -- 6.6 Conclusions -- 
       6.7 Acknowledgments -- 6.8 References -- Chapter 7 
       Strigolactones and lipo-chitooligosaccharides as molecular
       communication signals in the 
       arbuscular mycorrhizal symbiosis -- 7.1 Introduction -- 
       7.2 Strigolactones as rhizospheric signals for the AM 
       symbiosis -- 7.3 Chitin-derived molecules as early signals
       produced by AM fungi -- 7.4 Plant receptors for AM fungal 
       signal molecules -- 7.5 Plant signaling pathways activated
       by AM fungal signal molecules -- 7.6 AM fungi also produce
       short chain chitin oligomers -- 7.7 What are the roles of 
       Myc-LCOs and Myc-COs? -- 7.8 Conclusions and perspectives 
       -- 7.9 Acknowledgments -- 7.10 References -- Chapter 8 
       Calcium signaling and transcriptional regulation 
       in arbuscular mycorrhizal symbiosis -- 8.1 Introduction --
       8.2 Symbiotic calcium signaling -- 8.3 Perception 
       and decoding of calcium oscillations -- 8.4 
       Transcriptional regulators in AM signaling 
505 8  8.5 Transcriptional reprogramming of host plant cells 
       during arbuscular mycorrhizal symbiosis (AMS) -- 8.6 
       Concluding remarks -- 8.7 References -- Chapter 9 
       Signaling pathways driving the development 
       of ectomycorrhizal symbiosis -- 9.1 Introduction -- 9.2 
       Early recognition events -- 9.3 Fungal accommodation 
       within plant tissues -- 9.4 Hormone-based communication --
       9.5 Effector-based communication -- 9.6 CO2 and symbiosis 
       -- 9.7 Conclusion -- 9.8 Acknowledgments -- 9.9 References
       -- Section 3 Physiology, including carbon and nutrient 
       exchange between symbionts -- Chapter 10 Carbohydrate 
       metabolism in ectomycorrhizal symbiosis -- 10.1 
       Introduction -- 10.2 The fungal partner -- 10.3 The host 
       plant -- 10.4 Summary and outlook -- 10.5 References -- 
       Chapter 11 Nitrogen acquisition in ectomycorrhizal 
       symbiosis -- 11.1 Introduction -- 11.2 Nitrogen 
       availability in soil -- 11.3 The role of extramatrical 
       mycelium in N acquisition -- 11.4 Organic N acquisition --
       11.5 Functional diversity for N uptake -- 11.6 The 
       pathways of N assimilation -- 11.7 The plant benefit -- 
       11.8 Concluding remarks -- 11.9 Acknowledgments -- 11.10 
       References -- Chapter 12 Phosphorus metabolism 
       and transport in arbuscular mycorrhizal symbiosis -- 12.1 
       Introduction -- 12.2 Pi uptake and compartmentalization --
       12.3 Long-distance Pi translocation through hyphae -- 12.4
       Pi transfer from the fungi to the host - the symbiotic 
       interface -- 12.5 Perspectives -- 12.6 Acknowledgements --
       12.7 References -- Chapter 13 Primary metabolism 
       in arbuscular mycorrhizal symbiosis: Carbon, 
       nitrogen and sulfur -- 13.1 Introduction -- 13.2 Carbon 
       assimilation and metabolism in source leaves -- 13.3 
       Carbon metabolism in sink organs of the shoot -- 13.4 
       Carbon metabolism in roots -- 13.5 Carbon metabolism 
       during AM fungal development 
505 8  13.6 Nitrogen and sulfur metabolism during AM fungal 
       asymbiotic and presymbiotic development -- 13.7 Nitrogen 
       and sulfur metabolism during AM fungal symbiotic 
       development -- 13.8 Nitrogen and sulfur metabolism 
       in roots -- 13.9 Nitrogen and sulfur metabolism in leaves 
       -- 13.10 Nitrogen and sulfur metabolism in fruits -- 13.11
       Gaps in our knowledge -- 13.12 References -- Chapter 14 
       The transportome of mycorrhizal systems -- 14.1 
       Introduction -- 14.2 Carbon transport from plant leaves 
       to the fungal partner -- 14.3 Nitrogen transport 
       in mycorrhizal roots -- 14.4 Phosphate transport systems 
       involved in mycorrhizal uptake pathway -- 14.5 Plant 
       sulfur nutrition in mycorrhizal symbiosis -- 14.6 
       Mycorrhizal potassium nutrition mediated by transporters 
       and channels -- 14.7 Aquaporins as water flux facilitators
       in mycorrhizal associations -- 14.8 And still more 
       transport systems - microelements in mycorrhizal 
       interactions -- 14.9 Conclusion -- 14.10 References -- 
       Chapter 15 Soil organic matter decomposition mechanisms 
       in ectomycorrhizal fungi -- 15.1 Introduction -- 15.2 
       Litter decomposition in saprotrophic fungi -- 15.3 SOM 
       decomposition in ECM fungi -- 15.4 Mobilization 
       of nutrients -- 15.5 Ecological aspects -- 15.6 
       Conclusions -- 15.7 Acknowledgments -- 15.8 References -- 
       Chapter 16 Homeostasis of trace elements in mycorrhizal 
       fungi -- 16.1 Introduction -- 16.2 How do mycorrhizal 
       fungi maintain cellular trace element homeostasis? -- 16.3
       Facing the challenge of oxidative stress, damage 
       and repair -- 16.4 Trace element management at a higher 
       organizational level -- 16.5 Natural variation in trace 
       element homeostasis of mycorrhizal fungi -- 16.6 
       Acknowledgments -- 16.7 References -- Section 4 Population
       and community ecology, and environmental genomics -- 
       Chapter 17 Molecular identification of fungi -- 17.1 
       Introduction -- 17.2 Early molecular techniques 
505 8  17.3 High-throughput methods -- 17.4 PCR-free technologies
       and metagenomes -- 17.5 Addressing the "active" community 
       -- 17.6 Technological biases -- 17.7 Identification 
       of individuals -- 17.8 DNA barcodes and metabarcodes -- 
       17.9 Clustering -- 17.10 Identification -- 17.11 
       Conclusions and perspectives -- 17.12 Acknowledgments -- 
       17.13 References -- Chapter 18 Molecular technologies 
       applied to the ecology of ectomycorrhizal communities -- 
       18.1 Introduction -- 18.2 Progress and pitfalls 
       in molecular technologies -- 18.3 Richness and structure 
       of ECM fungal communities assessed by meta‐omics -- 18.4 
       New highlights on microbiomes associated with ECM fungi --
       18.5 Advances in the understanding of the role of ECM 
       fungi in forest ecosystem function -- 18.6 Truffles 
       as example of using high‐throughput molecular methods to 
       facilitate ECM fungi cultivation -- 18.7 Conclusions -- 
       18.8 Acknowledgments -- 18.9 References -- Chapter 19 The 
       biogeography of ectomycorrhizal fungi - a history of life 
       in the subterranean -- 19.1 Why study the biogeography of 
       ectomycorrhizal fungi? -- 19.2 Ectomycorrhizal 
       biogeography in the pre‐molecular era -- 19.3 The advance
       of molecular phylogeography -- 19.4 Ectomycorrhizal 
       communities in space -- 19.5 Dispersal limitation -- 19.6 
       Spatial patterns of diversity -- 19.7 EMF across time 
       and space -- 19.8 Conclusions -- 19.9 References -- 
       Chapter 20 Spatial ecology of ectomycorrhizal fungal 
       communities -- 20.1 Introduction -- 20.2 Organismal 
       challenges to understanding spatial ecology of ECM fungi -
       - 20.3 ECM spatial ecology - current knowledge -- 20.4 
       Importance of preliminary investigations - getting 
       the scale right -- 20.5 Advances in spatial statistical 
       techniques -- 20.6 Future directions and outstanding 
       research questions -- 20.7 Conclusions -- 20.8 
       Acknowledgments -- 20.9 References 
505 8  Chapter 21 Fungal ecology in boreal forest ecosystems 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Plant-fungus relationships 
655  4 Electronic books 
776 08 |iPrint version:|aMartin, Francis|tMolecular Mycorrhizal 
       Symbiosis|dNew York : John Wiley & Sons, Incorporated,
       c2016|z9781118951415 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=4729653|zClick to View