Record:   Prev Next
Author Stein, Derek
Title Nanofluidics : Nanoscience and Nanotechnology
Imprint Cambridge : Royal Society of Chemistry, 2008
©2008
book jacket
Edition 1st ed
Descript 1 online resource (211 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series ISSN ; v.6
ISSN
Note Nanofluidics -- Contents -- Chapter 1 Transport of Ions, DNA Polymers, and Microtubules in the Nanofluidic Regime -- 1.1 Introduction -- 1.2 Ionic Transport -- 1.2.1 Electrically Driven Ion Transport -- 1.2.2 Streaming Currents -- 1.2.3 Streaming Currents as a Probe of Charge Inversion -- 1.2.4 Electrokinetic Energy Conversion in Nanofluidic Channels -- 1.3 Polymer Transport -- 1.3.1 Pressure-Driven Polymer Transport -- 1.3.1.1 Pressure-Driven DNA Mobility -- 1.3.1.2 Dispersion of DNA Polymers in a Pressure-Driven Flow -- 1.3.2 Electrokinetic DNA Concentration in Nanofluidic Channels -- 1.3.3 DNA Conformations and Dynamics in Slit-Like Nanochannels -- 1.4 Microtubule Transport in Nanofluidic Channels Driven By Electric Fields and By Kinesin Biomolecular Motors -- 1.4.1 Electrical Manipulation of Kinesin-Driven Microtubule Transport -- 1.4.2 Mechanical Properties of Microtubules Measured from Electric Field-Induced Bending -- 1.4.3 Electrophoresis of Individual Microtubules in Microfluidic Channels -- 1.5 Acknowledgements -- References -- Chapter 2 Biomolecule Separation, Concentration, and Detection using Nanofluidic Channels -- 2.1 Introduction -- 2.2 Fabrication Techniques for Nanofluidic Channels -- 2.2.1 Etching & Substrate Bonding Methods -- 2.2.2 Sacrificial Layer Etching Techniques -- 2.2.3 Other Fabrication Methods -- 2.3 Biomolecule Separation Using Nanochannels -- 2.3.1 Molecular Sieving using Nanofluidic Filters -- 2.3.2 Computational Modelling of Nanofilter Sieving Phenomena -- 2.4 Biomolecule Concentration Using Nanochannels -- 2.4.1 Biomolecule Pre-concentration using Nanochannels and Nanomaterials -- 2.4.2 Non-Linear Electrokinetic Phenomena near Nanochannels -- 2.5 Confinement of Biomolecules Using Nanochannels -- 2.5.1 Nanochannel Confinement of Biomolecules
2.5.2 Enhancement of Binding Assays using Molecule Confinement in Nanochannels -- 2.6 Conclusions and Future Directions -- 2.7 Acknowledgements -- References -- Chapter 3 Particle Transport in Micro and Nanostructured Arrays: Asymmetric Low Reynolds Number Flow -- 3.1 An Introduction to Hydrodynamics and Particles Moving in Flow Fields -- 3.2 Potential Functions in Low Reynolds Number Flow -- 3.3 Arrays Of Obstacles And How Particles Move in Them: Puzzles and Paradoxes in Low Re Flow -- References -- Chapter 4 Molecular Transport and Fluidic Manipulation in Three Dimensional Integrated Nanofluidic Networks -- 4.1 Introduction -- 4.2 Experimental Characterization of Nanofluidic Flow -- 4.2.1 Surface Charge -- 4.2.2 Debye Length -- 4.3 Integrated Nanofluidic Systems -- 4.3.1 Molecular Sampling (Digital Fluidic Manipulation) -- 4.3.2 Sample Pre-Concentration -- 4.4 Theory and Simulations -- 4.4.1 Theory -- 4.4.2 Ion Accumulation and Depletion -- 4.4.3 Ionic Currents -- 4.4.4 Induced Flow -- 4.5 Conclusions -- 4.6 Acknowledgements -- References -- Chapter 5 Fabrication of Silica Nanofluidic Tubing for Single Molecule Detection -- 5.1 Introduction -- 5.2 Fabrication of Silica Nanofluidic Tubes -- 5.2.1 Concepts -- 5.2.2 Electrospinning -- 5.2.2.1 Basics of Electrospinning -- 5.2.2.2 Nano-Scale Silica Fibers and Hollow Tubing Structures -- 5.2.2.3 Characterization of the Scanned Coaxial Electrospinning Process -- 5.2.3 Heat-Induced Stretching Method -- 5.3 Analysis of Single Molecules Using Nanofluidic Tubes -- 5.3.1 Experimental Setup -- 5.3.2 Detection and Measurement of Single Molecules in Nanofluidic Channels -- 5.3.3 Electrokinetic Molecule Transport in Nanofluidic Tubing -- 5.4 Conclusions -- 5.5 Acknowledgements -- References -- Chapter 6 Single Molecule Analysis Using Single Nanopores -- 6.1 Introduction -- 6.2 Fabrication of Single Nanopores
6.2.1 Formation of α-Hemolysin Pores on Lipid Bilayers -- 6.2.2 Formation of Solid-State Nanopores on Thin Films -- 6.2.2.1 Free Standing Thin Film Preparation -- 6.2.2.2 Dimensional Structures of Solid-State Nanopore Using Tem Tomography -- 6.2.3 Experimental Setup for Ionic Current Blockade Measurements on Nanopores -- 6.2.3.1 α-Hemolysin Nanopores -- 6.2.3.2 Solid-State Nanopores -- 6.3 Analysis of Nucleic Acids Using Nanopores -- 6.3.1 Characterization of Single Nanopores -- 6.3.1.1 α-Hemolysin Nanopores -- 6.3.1.2 Solid-State Nanopores -- 6.3.2 Analysis of Single Molecules Translocating Through Single Nanopores -- 6.3.2.1 α-Hemolysin Nanopores -- 6.3.2.2 Solid-State Nanopores -- 6.4 Conclusions -- 6.5 Acknowledgements -- References -- Chapter 7 Nanopore-Based Optofluidic Devices for Single Molecule Sensing -- 7.1 Introduction -- 7.2 Light in Sub-Wavelength Pores -- 7.2.1 Evanescent Fields in Waveguides -- 7.2.2 Zero-Mode Waveguides -- 7.3 Design Rules using Real Metals -- 7.3.1 Material Selection -- 7.3.2 Pore Size and Probe Volume -- 7.4 Implementation and Instrumentation -- 7.4.1 Detection with a Confocal Microscope -- 7.4.2 Probing Nanopore Arrays Using A Camera -- 7.5 Conclusions -- References -- Chapter 8 Ion-Current Rectification in Nanofluidic Devices -- 8.1 Introduction -- 8.1.1 Analogy between Nanofluidic and Semiconductor Devices -- 8.2 Nanofluidic Devices with Rectifying Effects -- 8.2.1 Asymmetric Channel Geometries -- 8.2.2 Asymmetric Bath Concentrations -- 8.2.3 Asymmetric Surface Charge Distribution -- 8.3 Theory of Rectifying Effect in Nanofluidic Devices -- 8.3.1 Qualitative Interpretation of Ion Rectification by Solving Poisson-Nernst-Planck Equations -- 8.3.1.1 Conical Nanopores -- 8.3.1.2 Concentration Gradient in Homogeneous Nanochannels -- 8.3.1.3 Bipolar Nanochannels
8.3.2 Qualitative Interpretations of Ion Rectification in Nanofluidic Devices -- 8.3.3 Comparison of Rectifying Effects in Nanofluidic Diodes and Semiconductor Diodes -- 8.4 Conclusions -- References -- Chapter 9 Nanopillars and Nanoballs for DNA Analysis -- 9.1 Introduction -- 9.2 Fabrication of Nanopillars and Nanoballs -- 9.2.1 Fabrication of Nanopillars -- 9.2.2 Self-Assembled Nanospheres -- 9.2.3 Synthesis of Pegylated-Latex -- 9.3 Nanopillars for DNA Analysis -- 9.3.1 DNA Analysis by Tilted Patterned Nanopillar Chips -- 9.3.2 Single DNA Molecule Imaging In Tilted Pattern Nanopillar Chips -- 9.3.3 DNA Analysis by Square Patterned Nanopillar Chips and Nanowall Chips -- 9.3.4 Single DNA Molecule Imaging In Square Patterned Nanopillar Chips -- 9.3.5 Mechanism of Separation in Nanopillar Chips -- 9.4 Nanoballs for DNA Analysis -- 9.4.1 DNA Analysis by a Self-Assembled Nanosphere Solution in a Chip -- 9.4.2 DNA Analysis by Pegylated-Latex Mixed Polymer Solution in a Chip -- 9.4.3 Single DNA Molecule Imaging In a Nanoball Solution -- 9.5 Conclusions -- References -- Subject Index
"Accessible in style, Nanofluidics fills a gap in the literature for a book focusing on bioanalytical applications within this growing field."
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Stein, Derek Nanofluidics : Nanoscience and Nanotechnology Cambridge : Royal Society of Chemistry,c2008 9780854041473
Subject Fluidic devices
Electronic books
Alt Author Dekker, Cees
Han, Jongyoon
Austin, Robert
Bohn, Paul W
Kameoka, Jun
Kim, MinJun
Guo, Jay
Baba, Yoshinobu
Edel, Joshua
Record:   Prev Next