Record:   Prev Next
Author Garg, Ramesh
Title Microstrip Lines and Slotlines
Imprint Norwood : Artech House, 2013
©2013
book jacket
Edition 3rd ed
Descript 1 online resource (603 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- Microstrip Lines and Slotlines Third Editon -- Contents -- Preface to the Third Edition -- Chapter 1 Microstrip Lines I: Quasi-Static Analyses, Dispersion Models, and Measurements -- 1.1 Introduction -- 1.1.1 Planar Transmission Structures -- 1.1.2 Microstrip Field Configuration -- 1.1.3 Methods of Microstrip Analysis -- 1.2 Quasi-Static Analyses of a Microstrip -- 1.2.1 Modified Conformal Transformation Method -- 1.2.2 Finite Difference Method -- 1.2.3 Integral Equation Method -- 1.2.4 Variational Method in the Fourier Transform Domain -- 1.2.5 Segmentation and Boundary Element Method (SBEM) -- 1.3 Microstrip Dispersion Models -- 1.3.1 Coupled TEM Mode and TM Mode Model -- 1.3.2 An Empirical Relation [35] -- 1.3.3 Dielectric-Loaded Ridged Waveguide Model [36] -- 1.3.4 Empirical Formulae for Broad Frequency Range -- 1.3.5 Planar Waveguide Model -- 1.3.6 Some Comments -- 1.4 Microstrip Transitions -- 1.4.1 Coaxial-to-Microstrip Transition -- 1.4.2 Waveguide-to-Microstrip Transition -- 1.5 Microstrip Measurements -- 1.5.1 Substrate Dielectric Constant -- 1.5.2 Characteristic Impendance -- 1.5.3 Phase Velocity or Effective Dielectric Constant -- 1.5.4 Attenuation Constant -- 1.6 Fabrication -- 1.6.1 Printed Circuit Technologies -- 1.6.2 Hybrid Microwave Integrated Circuits -- 1.6.3 Monolithic Integrated Circuit Technologies -- References -- Chapter 2 Microstrip Lines II: Fullwave Analyses, Design Considerations, and Applications -- 2.1 Methods of Fullwave Analysis -- 2.2 Analysis of an Open Microstrip -- 2.2.1 Integral Equation Method in the Space Domain -- 2.2.2 Galerkin's Method in the Spectral Domain [2, 3] -- 2.2.3 Discussion of Results -- 2.3 Analysis of an Enclosed Microstrip -- 2.3.1 Integral Equation Methods [6-10] -- 2.3.2 Finite Difference Method -- 2.3.3 Discussion of Results -- 2.4 Design Considerations
2.4.1 Microstrip Losses -- 2.4.2 Power Handling Capability [28] -- 2.4.3 Effect of Tolerances [38] -- 2.4.4 Effect of Dielectric Anisotropy -- 2.4.5 Design Equations -- 2.4.6 Frequency Range of Operation -- 2.4.7 Lumped Element Model of Microstrip Interconnect -- 2.5 Other Types of Microstrip Lines -- 2.5.1 Suspended and inverted microstrip lines -- 2.5.2 Multilayered Dielectric Microstrip -- 2.5.3 Thin Film Microstrip (TFM) -- 2.5.4 Valley Microstrip Lines -- 2.5.5 Buried Microstrip Line -- 2.5.6 Superconducting Microstrip Circuits -- 2.6 Microstrip Applications -- 2.6.1 Lumped Elements -- 2.6.2 Passive Components -- 2.6.3 Active Components -- 2.6.4 Packages and Assemblies -- References -- Chapter 3 Microstrip Discontinuities I: Quasi-Static Analysis and Characterization -- 3.1 Introduction -- 3.2 Discontinuity Capacitance Evaluation -- 3.2.1 Matrix Inversion Method -- 3.2.2 Variational Method -- 3.2.3 Galerkin's Method in the Fourier Transform Domain [5, 6] -- 3.2.4 Use of Line Sources with Charge Reversal -- 3.3 Discontinuity Inductance Evaluation -- 3.4 Characterization of Various Discontinuities -- 3.4.1 Open Ends -- 3.4.2 Gaps in a Microstrip -- 3.4.3 Steps in Width -- 3.4.4 Bends -- 3.4.5 T-Junctions -- 3.4.6 Cross Junctions -- 3.4.7 Notch -- 3.4.8 RF Short and Via Hole -- 3.5 Compensated Microstrip Discontinuities -- 3.5.1 Step in Width -- 3.5.2 Bends -- 3.5.3 T-Junction -- References -- Chapter 4 Microstrip Discontinuities II:Fullwave Analysis and Measurements -- 4.1 Planar Waveguide Analysis -- 4.1.1 Discontinuity Characterization -- 4.1.2 Compensation of Discontinuity Reactances -- 4.1.3 Radiation and Parasitic Coupling -- 4.2 Fullwave Analysis of Discontinuities -- 4.2.1 Galerkin's Method in the Spectral Domain [23] -- 4.2.2 Integral Equation Solution in the Space Domain
4.2.3 Time Domain Methods for Microstrip Discontinuity Characterization -- 4.3 Discontinuity Measurements -- 4.3.1 Linear Resonator Method -- 4.3.2 Ring Resonator Method -- 4.3.3 Scattering Parameters Measurement Method -- References -- Chapter 5 Slotlines -- 5.1 Introduction -- 5.2 Slotline Analysis -- 5.2.1 Approximate Analysis -- 5.2.2 Transverse Resonance Method -- 5.2.3 Galerkin's Method in the Spectral Domain -- 5.3 Design Considerations -- 5.3.1 Closed-Form Expressions -- 5.3.2 Effect of Metal Thickness -- 5.3.3 Effect of Tolerances -- 5.3.4 Losses in Slotline -- 5.4 Slotline Discontinuities -- 5.4.1 Short End Discontinuty -- 5.4.2 Open End Discontinuity -- 5.5 Variants of Slotline -- 5.5.1 Coupled Microstrip-Slotline -- 5.5.2 Conductor-Backed Slotline -- 5.5.3 Conductor-Backed Slotline with Superstrate -- 5.5.4 Slotlines with Double-Layered Dielectric -- 5.6 Slotline Transitions -- 5.6.1 Coaxial-to-Slotline Transition -- 5.6.2 Microstrip-to-Slotline Cross-Junction Transition -- 5.7 Slotline Applications -- 5.7.1 Circuits Using T-Junctions -- 5.7.2 Circuits Using Wideband 180° Phase Shift -- 5.7.3 Hybrid/de Ronde's Branchline Couplers -- 5.7.4 Other Types of Slotline Circuits -- References -- Apendix 5.A: Susceptance Calculation for the Transverse Resonance Method -- Appendix 5.B: Sensitivity Expressions for Slotline Impedance and Wavelength -- Chapter 6 Defected Ground Structure (DGS) -- 6.1 Introduction -- 6.1.1 Basic Structure of DGS -- 6.1.2 Unit Cell and Periodic DGS -- 6.1.3 Advantages and Disadvantages of DGS -- 6.2 Dgs Characteristics -- 6.2.1 Stop-Band Properties -- 6.2.2 Slow-Wave Propagation -- 6.2.3 Realization of Transmission Lines with High Characteristic Impedance -- 6.3 Modeling of Dgs -- 6.3.1 Full-Wave Modeling -- 6.3.2 Equivalent Circuit Models -- 6.4 Applications of DGS -- 6.4.1 DGS-Based Filters
6.4.2 Other DGS-Based Passive Components -- 6.4.3 DGS-Based Active Circuits -- 6.4.4 DGS-Based Antennas -- References -- Chapter 7 Coplanar Lines: Coplanar Waveguide and Coplanar Strips -- 7.1 Introduction -- 7.2 Analysis -- 7.2.1 Quasi-Static Conformal Mapping Analysis of CPW -- Variants of CPW -- 7.2.2 Quasi-Static Conformal Mapping Analysis of CPS -- Variants of Coplanar Strip Line -- 7.2.3 Fullwave Analysis -- 7.3 Design Considerations -- 7.3.1 Design Equations -- 7.3.2 Dispersion -- 7.3.3 Effect of Metallization Thickness -- 7.4 Losses in Coplanar Lines -- 7.4.1 Dielectric Loss -- 7.4.2 Conductor Loss -- 7.4.3 Radiation and Surface Wave Losses -- 7.5 Effect of Tolerances -- 7.6 Comparison with Microstrip Line and Slotline -- 7.7 Transitions -- 7.7.1 Coax-to-CPW Transitions [71] -- 7.7.2 Microstrip-to-CPS Transitions -- 7.7.3 Microstrip-to-Cpw Transition [142] -- 7.7.4 Cpw-to-CPS Transitions -- 7.7.5 CPS-to-Slotline Transitions -- 7.7.6 Slotline-to-CPW Transitions -- 7.8 Discontinuities in Coplanar Lines -- 7.8.1 CAD Models for Discontinuities in Coplanar Waveguide Circuits -- Discontinuity Compensation in CPW Circuits -- 7.8.2 CAD Models for Discontinuities in Coplanar Strips Circuits -- 7.9 Coplanar Line Circuits -- 7.9.1 Circuits with Series and Shunt Reactances in CPW -- 7.9.2 Circuits Using Slotline-CPW Junctions -- References -- Chapter 8 Coupled Microstrip Lines -- 8.1 Introduction -- 8.2 General Analysis of Coupled Lines -- 8.2.1 Methods of Analysis -- 8.2.2 Coupled Mode Approach [9-11] -- 8.2.3 Even- and Odd-Mode Approach -- 8.3 Characteristics of Coupled Microstrip Lines -- 8.3.1 Quasi-Static Analysis -- 8.3.2 Fullwave Analysis -- 8.3.3 Dispersion Models -- 8.4 Measurements on Coupled Microstrip Lines -- 8.4.1 Impedance Measurements -- 8.4.2 P hase Constant Measurements -- 8.5 Design Considerations for Coupled Microstrip Lines
8.5.1 Design Equations -- 8.5.2 Losses [60] -- 8.5.3 Effect of Fabrication Tolerances [62] -- 8.5.4 Coupled Microstrip Lines with Dielectric Overlays -- 8.5.5 Effect of Dielectric Anisotropy -- 8.6 Slot-Coupled Microstrip Lines -- 8.7 Coupled Multiconductor Microstrip Lines -- 8.8 Discontinuities in Coupled Microstrip Lines -- 8.8.1 Network Model [79] -- 8.8.2 Open-End Discontinuity -- References -- Chapter 9 Substrate Integrated Waveguide (SIW) -- 9.1 Introduction -- 9.1.1 Geometry -- 9.1.2 Operation Principle -- 9.2 Analysis Techniques of Siw -- 9.2.1 Equivalent Rectangular Waveguide -- 9.2.2 Full-wave Modeling of SIW Interconnects -- 9.2.3 Full-wave Modeling of SIW Components -- 9.2.4 Equivalent Circuits Models of SIW Discontinuities -- 9.3 Design Considerations -- 9.3.1 Mechanisms of Loss -- 9.3.2 Guided-wave and Leaky-wave Regions of Operation -- 9.3.3 Band-gap Effects in SIW Structures -- 9.3.4 SIW Design Rules -- 9.4 Other SIW Configurations -- 9.4.1 Substrate Integrated Folded Waveguide (SIFW) -- 9.4.2 Half-Mode Substrate Integrated Waveguide (HMSIW) -- 9.4.3 Substrate Integrated Slab Waveguide (SISW) -- 9.4.4 Substrate Integrated Ridge Waveguide (SIRW) -- 9.5 Transitions Between SIW and Planar Transmission Lines -- 9.5.1 Microstrip-to-SIW Transitions -- 9.5.2 CPW-to-SIW Transitions -- 9.6 Siw Components and Antennas -- 9.6.1 Passive Components -- 9.6.2 Active Circuits -- 9.6.3 Antennas -- 9.6.4 System-on-Substrate (SoS) -- 9.7 Fabrication Technologies and Materials -- 9.7.1 Fabrication by PCB and LTCC Technologies -- 9.7.2 Integration of SIW on Silicon -- 9.7.3 Use of Novel Substrate Materials -- 9.7.4 Solutions for High Frequency Operation of SIW -- References -- About the Authors -- Index
Since the second edition of this book was published in 1996, planar transmission line technology has progressed considerably due to developments in ultrawideband (UWB) communications, imaging, and RFID applications. In addition, the simultaneous demands for compactness of wireless electronic devices while meeting improved performance requirements, necessitates increased use of computer-aided design, simulation, and analysis by microwave engineers. This book is written to help engineers successfully meet these challenges. Details include the development of governing equations, basis functions, Green's function and typical results. More than 1200 equations supplement the text. Special attention is given to the use of simulation software in the design of complex devices and understanding the connection between data collected from simulation software and the actual design process.The book is primarily intended for microwave design engineers and R&D specialists who need to employ planar transmission lines in designing distributed circuits and antenna systems for a wide range of wireless applications. Advanced undergraduate and graduate students in electronics and telecommunication engineering will also welcome this addition to your library
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Garg, Ramesh Microstrip Lines and Slotlines Norwood : Artech House,c2013 9781608075355
Subject Sweden -- Economic conditions.;Sweden
Electronic books
Alt Author Bahl, Inder
Bozzi, Maurizio
Record:   Prev Next