Record:   Prev Next
Author Abecassis-Taly, Valerie
Title Unravelling Single Cell Genomics : Micro and Nanotools
Imprint Cambridge : Royal Society of Chemistry, 2010
©2010
book jacket
Edition 1st ed
Descript 1 online resource (333 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series ISSN ; v.15
ISSN
Note Unravelling Single Cell Genomics -- Contents -- Chapter 1 An Introduction to Molecular Biology -- Abstract -- 1.1 DNA Structure and Gene Expression -- 1.2 Molecular Biology Tools for Nucleic Acid Studies -- 1.2.1 DNA Engineering -- 1.2.2 Polymerase Chain Reaction -- 1.2.3 DNA Microarrays -- References -- Chapter 2 The Central Dogma in Molecular Biology -- Abstract -- 2.1 Replication -- 2.2 Transcription -- 2.3 Translation -- 2.4 Regulation of Gene Expression -- 2.4.1 Transcriptional Control -- 2.4.2 Post-transcriptional Modifications -- 2.4.3 Translational Control -- 2.4.4 Post-translational Control -- 2.5 Limitations of the Central Dogma -- 2.6 Single Cells and their Complexity -- References -- Chapter 3 From Unicellular to Multicellular Organisms: Tells from Evolution and from Development -- Abstract -- 3.1 Cells from Evolution -- 3.2 Cells from Development -- References -- Chapter 4 Understanding Cellular Differentiation -- Abstract -- 4.1 Development of the Cerebral Cortex -- 4.2 Neuronal Differentiation -- 4.3 Single Cell Analysis in Differentiation Processes -- References -- Chapter 5 Realistic Models of Neurons Require Quantitative Information at the Single-cell Level -- Abstract -- 5.1 Introduction -- 5.2 The Importance of Precise Neuronal Morphology -- 5.3 Each Neuron has a Unique Neurochemistry -- 5.4 Conclusions -- References -- Chapter 6 Application to Cancerogenesis: Towards Targeted Cancer Therapies? -- Abstract -- 6.1 Molecular Diagnosis in Cancer -- 6.2 Detection and Malignant Origin of Disseminated Cancer Cells -- 6.3 Genomic Studies of Single Disseminated Cancer Cells -- 6.4 Oncogene Dependence and Tumor Suppressor Sensitivity in Metastasis Founder Cells -- References -- Chapter 7 Capturing a Single Cell -- Abstract -- 7.1 Introduction -- 7.2 Overview of Cell Sorting Technologies -- 7.3 Laser Capture Microdissection Technologies
7.3.1 Infrared Laser Capture Systems -- 7.3.2 Ultraviolet Cutting Systems -- 7.4 Protocols Before Laser Microdissection (Tissue Sampling and Preparation) -- 7.4.1 Dissection from Fresh Frozen Tissue -- 7.4.2 Dissection from Formalin-fixed Paraffin-embedded Tissue -- 7.4.3 Immuno Laser Capture Microdissection -- 7.4.4 Other Cell-labeling Methods -- 7.5 Conclusion -- References -- Chapter 8 Looking at the DNA of a Single Cell -- Abstract -- 8.1 Challenges of Single Cell DNA Amplification -- 8.2 Methods for Amplifying Genomic DNA of Single Cells -- 8.3 Array Comparative Genomic Hybridization of Single Cells -- 8.4 Combined Genome and Transcriptome Analysis of Single Cells -- 8.5 Perspective on Single Cell DNA Analysis -- References -- Chapter 9 Gene Analysis of Single Cells -- Abstract -- 9.1 Single Cell RT-PCR After Patch Clamp -- 9.2 Correlating mRNA Expression and Functional Properties of Single Cells -- 9.3 Quantitative Analyses by scPCR -- 9.4 Molecular and Functional Phenotyping of Neuronal Types -- 9.5 Patch-clamp Harvesting of Single Cells -- 9.6 Sensitivity Limits -- 9.7 Controls -- 9.8 Interpretation of scPCR Results -- Conclusion -- Acknowledgement -- References -- Chapter 10 Proteomics -- Abstract -- 10.1 Motivation to Study Proteins at the Single Cell Level -- 10.1.1 Proteins, mRNAs and DNA -- 10.1.2 Sample Preparation -- 10.1.3 Sub-proteome Analysis -- 10.2 Analytical Strategies -- 10.2.1 Mass Spectrometry -- 10.2.2 Coupling Separation Techniques and Mass Spectrometry -- 10.3 Strategies for Studying Proteins in Low Amounts of Samples -- 10.3.1 How to Enhance the Sensitivity: Miniaturization, Integration, and Automation -- 10.3.2 MALDI Interfaces -- Conclusion -- References -- Chapter 11 Microfluidics: Basic Concepts and Microchip Fabrication -- Abstract -- 11.1 Size Matters: An Introduction
11.2 A Short Chronology of Microfluidics Research -- 11.3 Microfluidics: Some Basics -- 11.3.1 Flow Generation -- 11.3.2 Laminar Flow -- 11.3.3 Digital Microfluidics: Segmented Flow -- 11.4 Fabrication Techniques and Materials -- 11.4.1 Photolithography -- 11.4.2 Soft Lithography -- 11.4.3 Microchip Materials -- 11.4.4 From Fabrication to Application -- 11.5 Concluding Remarks -- References -- Chapter 12 Cell Capture and Lysis on a Chip -- Abstract -- 12.1 Introduction -- 12.2 Cell Capture on a Chip -- 12.2.1 Mechanical Trapping -- 12.2.2 Electrical Trapping -- 12.2.3 Fluidic Trapping -- 12.2.4 Alternative Trapping Techniques -- 12.2.5 Conclusion on Cell Trapping -- 12.3 Cell Lysis in a Chip -- 12.3.1 Thermal Lysis -- 12.3.2 Chemical Lysis -- 12.3.3 ''Alkaline'' or Electrochemical Lysis -- 12.3.4 Electrical Lysis -- 12.3.5 Mechanical Lysis -- 12.3.6 Alternative Mechanical Lysis: Acoustic Lysis -- 12.3.7 Optical Lysis -- 12.3.8 Conclusion on Cell Lysis -- 12.4 Conclusion -- References -- Chapter 13 DNA Analysis in Microfluidic Devices and their Application to Single Cell Analysis -- Abstract -- 13.1 Amplification on a Chip -- 13.1.1 Polymerase Chain Reaction -- 13.1.2 Isothermal Techniques -- 13.2 DNA Analysis -- 13.2.1 Real-time PCR Detection -- 13.2.2 Capillary Electrophoresis -- 13.3 Why and When Smaller is Better -- 13.4 Applications of Microfluidic Single Cell Genetic Analysis in Microbial Ecology -- 13.5 Conclusion -- References -- Chapter 14 Gene Expression Analysis on Microchips -- Abstract -- 14.1 Introduction -- 14.2 Multi-step Microfluidic RT-PCR -- 14.3 One-step Microfluidic RNA Analysis -- 14.4 Microfluidic cDNA Analysis -- 14.5 Single Cell RNA Analysis -- 14.6 Conclusion -- Acknowledgement -- References -- Chapter 15 Analysis of Proteins at the Single Cell Level -- Abstract -- 15.1 Introduction -- 15.1.1 Protein Analysis: The Challenge
15.1.2 Why Microfluidics? -- 15.1.3 Microfluidics and Protein Analysis -- 15.2 Electrospray Ionization Mass Spectrometry -- 15.2.1 Connections and Coupling -- 15.2.2 Sample Processing: Purification and Digestion -- 15.2.3 Integrated Systems -- 15.3 MALDI-MS -- 15.3.1 Microfabricated MALDI Targets -- 15.3.2 Off-line Sample Preparation -- 15.3.3 Integrated Microsystems -- 15.4 Innovative Approaches for Protein Analysis at the Single Cell Level -- 15.4.1 Invasive Analysis -- 15.4.2 Partially Invasive Analysis -- 15.4.3 Non-invasive Analysis -- 15.5 Conclusion and Perspectives -- References -- Chapter 16 A Concrete Case: A Microfluidic Device for Single Cell Whole Transcriptome Analysis -- Abstract -- 16.1 Introduction -- 16.2 Choice of Biological Protocol, Material and Fabrication Technique -- 16.2.1 Protocols for Single Cell Whole Transcriptome Analysis -- 16.2.2 Miniaturizing Reactions: Continuous Flows, Reaction Chambers or Droplet Micro-fluidic Reactions -- 16.2.3 Choosing the Microchip Material -- 16.2.4 Microchip Fabrication -- 16.3 Integrating Reverse Transcription on a Chip -- 16.3.1 Gene Expression Profiling of Single-Cell Scale Amounts of RNA -- 16.3.2 Gene Expression Profiling of Single Cells -- 16.4 Amplifying the Transcriptome on a Chip -- 16.5 Detecting the Transcriptome on a Chip -- 16.5.1 Microfluidics and Conventional Microarrays -- 16.5.2 Microarray Development Using DNA Immobilization onto Microchannels -- 16.5.3 Towards Transcriptome Analysis in the Liquid Phase -- 16.6 Some Practical Conclusions -- References -- Chapter 17 Tiny Droplets for High-throughput Cell-based Assays -- Abstract -- 17.1 Introduction -- 17.2 Droplet-based Microfluidics -- 17.2.1 EWOD and ''Digital Microfluidics'': Tools for High-content Screening -- 17.2.2 Droplet-based Microfluidics: Tools for High-throughput Screening
17.3 Generating and Manipulating Droplets -- 17.3.1 Droplet Production -- 17.3.2 Droplet Division -- 17.3.3 Droplet Flow, Droplet Synchronization, and Droplet Incubation -- 17.3.4 Droplet Content Detection and Droplet Sorting -- 17.4 In Vitro Compartmentalization of Biological Reactions -- 17.4.1 Cell Compartmentalization in Aqueous Droplets -- 17.4.2 Incubation and Cell Viability in Droplets -- 17.4.3 Cell-based Assays and Cell Manipulation -- 17.5 Towards Integrated Platforms for Cell-based Assays -- 17.6 Conclusions -- References -- Chapter 18 New Detection Methods for Single Cells -- Abstract -- 18.1 Introduction -- 18.2 Bio-barcode Strategy -- 18.2.1 Principle -- 18.2.2 An Example: DNA Origami -- 18.3 Imaging Gene Expression in Living Cells -- 18.3.1 Motivations -- 18.3.2 Improvements in Photonic Microscopy -- 18.3.3 Improvements in Fluorophore Design -- 18.4 Quantum Dots-based Techniques -- 18.4.1 Quantum Dots Bead-based Assays -- 18.4.2 Single Quantum Dots-based DNA Nanosensors -- 18.4.3 Quantum Dots for Super-resolution Microscopy -- 18.5 Gold Nanoparticle-based Detection Methods -- 18.5.1 Resonant Light Scattering Detection -- 18.5.2 Molecular Beacons with Gold Nanoparticles -- 18.5.3 Molecular Plasmonic Rulers -- 18.5.4 Surface-enhanced Raman Scattering Detection -- 18.6 Electrochemical Sensors -- 18.7 Concluding Remarks -- References -- Subject Index
Aimed predominantly at graduate students, this book provides all the necessary information to conduct experiments in microfluidics and molecular biology
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Abecassis-Taly, Valerie Unravelling Single Cell Genomics : Micro and Nanotools Cambridge : Royal Society of Chemistry,c2010 9781847559111
Subject Microtechnology - methods
Electronic books
Alt Author Baret, Jean-Christophe
Cauli, Bruno
Chabert, Max
Dauphinot, Luce
Dittrich, Petra
Fort, Emmanuel
Klein, Christophe
Lachuer, Joel
Lambolez, Bertrand
Record:   Prev Next