Record:   Prev Next
Author Grace, David
Title Broadband Communications Via High Altitude Platforms
Imprint Hoboken : John Wiley & Sons, Incorporated, 2010
©2011
book jacket
Edition 2nd ed
Descript 1 online resource (400 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Broadband Communications via High-Altitude Platforms -- Contents -- List of Figures -- List of Tables -- List of Contributors -- Preface -- Part One: Basics, Enabling Technologies and Economics -- 1 Introduction -- 1.1 Introduction -- 1.2 History -- 1.3 Wireless Communications in a HAP Environment -- 1.3.1 Comparison of HAPs Capabilities when Compared with Terrestrial and Satellite Systems -- 1.3.2 Regulatory Environment and Restrictions -- 1.4 Candidate Standards for Provision of Services and Applications from HAPs -- 1.4.1 Mobile Cellular Standards -- 1.4.2 IEEE 802 Wireless Standards -- 1.4.3 Multipoint Distribution Services for Multimedia Applications - MMDS and LMDS -- 1.4.4 DVB Standards -- 1.5 Overview of Past and Present HAP Related Projects, Trials and Development Plans -- 1.5.1 StratXX AG - X-Station -- 1.5.2 ERS srl -- 1.5.3 CAPANINA -- 1.5.4 USEHAAS -- 1.5.5 COST 297 -- 1.5.6 The Japanese National Project -- 1.5.7 The Korean National Project -- 1.5.8 NASA Activity -- 1.5.9 AV Inc -- 1.5.10 Lockheed Martin, Boeing and Worldwide Aeros -- 1.5.11 Advanced Technologies Group (ATG) -- 1.5.12 European Space Agency (ESA) Activity -- 1.5.13 Flemish Institute for Technological Research (VITO) -- 1.5.14 QinetiQ Ltd -- 1.5.15 Space Data Corporation -- 1.5.16 HeliNet -- 1.5.17 Lindstrand Technologies Ltd (UK)/University of Stuttgart -- 1.5.18 SkyStation -- 1.5.19 Angel Technologies - HALO -- References -- 2 Aeronautics and Energetics -- 2.1 Operating Environment and Related Challenges -- 2.1.1 The Layers of the Atmosphere -- 2.2 Types of Airborne Vehicles Used for HAPs -- 2.2.1 Aerostatic Aerial Platforms -- 2.2.2 Aerodynamic Aerial Platforms -- 2.3 Power Subsystem Alternatives -- 2.3.1 Conventional Energy Sources for HAPs -- 2.3.2 Renewable Energy Sources for HAPs -- 2.3.3 Remotely Beamed Energy for HAPs -- 2.4 Flight/Altitude Control
2.4.1 HAP Station Keeping -- 2.4.2 HAP Mobility Models -- 2.5 Typical Characteristics of HAP Aircraft and Airships -- References -- 3 Operating Scenarios and Reference Architectures -- 3.1 Operating Scenarios -- 3.1.1 HAPs User Scenarios -- 3.1.2 HAPs Network Scenarios -- 3.2 Antenna Requirements and Related Challenges -- 3.2.1 Introduction -- 3.2.2 Types of Antennas for the Delivery of Broadband Services in the mm-Wave Bands -- 3.2.3 Antenna Model Example -- 3.3 System and Network Architecture of HAP-Based Communication Systems -- 3.3.1 Overview -- 3.3.2 HAP Architectures -- 3.3.3 Broadband Communications Links -- References -- 4 Applications and Business Modelling -- 4.1 Introduction -- 4.2 Applications and Services -- 4.2.1 Short Term -- 4.2.2 Medium Term -- 4.2.3 Long Term -- 4.3 Business Model Introduction -- 4.3.1 Operating Scenario -- 4.3.2 Business Model Assumption -- 4.4 Service Provider Centric Models -- 4.4.1 Bandwidth Utilisation and Contention Ratio -- 4.4.2 WLAN to Trains -- 4.4.3 Backhaul for Terrestrial Base Stations/Access Points -- 4.4.4 Broadband Internet -- 4.4.5 Broadcast/Multicast -- 4.4.6 Event Servicing and Disaster Relief -- 4.4.7 Third Generation (3G) Mobile Telephone -- 4.5 HAP Operator Centric Model -- 4.5.1 Financial Model Assumptions -- 4.5.2 Unmanned Solar Powered Airship -- 4.5.3 Fuel Powered Manned Plane -- 4.5.4 Fuel Powered Unmanned Plane -- 4.5.5 Solar Powered Unmanned Plane -- 4.6 Risk Assessment -- 4.6.1 Technology Assessment -- 4.6.2 Market Assessment -- References -- 5 Future Development of HAPs and HAP-Based Applications -- 5.1 Trends in Aeronautical Development -- 5.2 HAP Roadmaps for Different Types of Applications -- 5.2.1 Application Example 1: WLAN to Trains -- 5.2.2 Application Example 2: Backhaul for Terrestrial Base Stations/Access Points -- 5.2.3 Application Example 3: Broadband Internet
5.2.4 Application Example 4: Broadcast/Multicast -- 5.2.5 Application Example 5: 3G Mobile Communications -- 5.3 Telecommunication Missions -- 5.3.1 The Payload for Telecommunications Applications -- References -- Part Two: Broadband Wireless Communications from High Altitude Platforms -- 6 HAP System Operating Environment -- 6.1 Operating Environment and Related Limitations -- 6.2 Propagation Channel Modelling -- 6.3 HAP Radio Frequency Propagation Channel Modelling -- 6.3.1 Absorption Due to Water Vapour and Atmospheric Gases -- 6.3.2 Scintillation -- 6.3.3 Rain Fading -- 6.3.4 Rain Fading and Scintillation -- 6.3.5 Influence of Hydrometeor Effects on Cross Polarisation -- 6.3.6 The Effects of Surrounding Environment -- 6.4 Conclusion -- References -- 7 FSO in HAP-Based Communication Systems -- 7.1 Applicability of FSO Technology to HAP Networks -- 7.1.1 Atmospheric Effects -- 7.1.2 HAP FSO-Link Configurations -- 7.2 Physical Layer Aspects for FSO Links in HAP Networks -- 7.3 Free Space Optics for Optical Transport Networks -- References -- 8 Advanced Communication Techniques as Enablers for HAP-Based Communication Systems -- 8.1 Modern Wireless System Design Concepts -- 8.1.1 Smart Antennas -- 8.1.2 Cognitive Radio and Dynamic Spectrum Management -- 8.1.3 Cross-Layer Design and Optimisation -- 8.2 Diversity Techniques -- 8.2.1 Diversity Techniques in Broadband HAP Communications -- 8.3 MIMO Systems -- 8.3.1 Spatial Multiplexing -- 8.3.2 Space-Time Coding -- 8.3.3 MIMO Systems in HAP Broadband Communications -- 8.4 Adaptive Coding and Modulation Schemes -- 8.4.1 ACM in HAP Broadband Communications -- 8.5 Advanced Radio Resource Management Techniques -- 8.5.1 Introduction -- 8.5.2 Scenario -- 8.5.3 Channel Assignment Strategy -- 8.5.4 Performance -- 8.5.5 No Connection Drop Algorithm
8.5.6 No Connection Drop Algorithm with No Downlink Threshold Detection -- 8.5.7 No Threshold Detection -- 8.5.8 Discussion -- References -- Part Three: Multiple High Altitude Platforms -- 9 Multiple HAP Networks -- 9.1 Why Multiple HAP Constellations? -- 9.1.1 Model of the Multiple HAP System -- 9.2 Multiple HAP Constellation Planning -- 9.2.1 Multiple HAPs Scenario with Directional HAP Antennas -- 9.3 User Antenna Pointing Error in Multiple HAP Systems -- 9.3.1 Methods for Characterising User Antenna Pointing Error -- 9.3.2 Effect of Pointing Error -- 9.4 Two-Ring Constellation Design for Multiple HAP Systems -- 9.4.1 Two-Ring Constellations Overview -- 9.5 Constraints of Two-Ring Constellation Designs -- 9.5.1 Constellation Design Strategies -- References -- 10 Networking Implications of Using Multiple HAP Constellations -- 10.1 Network Protocols -- 10.1.1 IP Foundations -- 10.1.2 Mobile IP Protocol -- 10.1.3 Hierarchical MIP -- 10.2 Mobility Management in HAP-Based Communication Systems -- 10.2.1 Access-Level Mobility -- 10.2.2 Micro-Mobility -- 10.2.3 Macro-Mobility -- 10.2.4 Types of Mobile Users -- 10.2.5 Network Mobility -- 10.3 Mobility and Backhaul Load Reduction Techniques -- 10.3.1 Placement of Home Agents -- 10.3.2 Multihoming Support -- 10.3.3 MN Movement Predictability -- References -- Index
"The work is well referenced and includes over one hundred and fifty figures and more than seventy-five tables. Contributors include professionals and academics in the field of communications engineering from Slovenia, Israel, Thailand and the UK." (Book News Inc., February 2011)
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Grace, David Broadband Communications Via High Altitude Platforms Hoboken : John Wiley & Sons, Incorporated,c2010 9780470694459
Subject High altitude platform systems (Telecommunication);Broadband communication systems -- Equipment and supplies.;Aeronautics.;Artificial satellites in telecommunication
Electronic books
Alt Author Mohorcic, Mihael
Grace, Dr David
Record:   Prev Next