Record:   Prev Next
Author Sharifabadi, Kamran
Title Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems
Imprint New York : John Wiley & Sons, Incorporated, 2016
©2016
book jacket
Edition 1st ed
Descript 1 online resource (415 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Wiley - IEEE Ser
Wiley - IEEE Ser
Note Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- About the Companion Website -- Nomenclature -- Introduction -- Chapter 1 Introduction to Modular Multilevel Converters -- 1.1 Introduction -- 1.2 The Two-Level Voltage Source Converter -- 1.2.1 Topology and Basic Function -- 1.2.2 Steady-State Operation -- 1.3 Benefits of Multilevel Converters -- 1.4 Early Multilevel Converters -- 1.4.1 Diode Clamped Converters -- 1.4.2 Flying Capacitor Converters -- 1.5 Cascaded Multilevel Converters -- 1.5.1 Submodules and Submodule Strings -- 1.5.2 Modular Multilevel Converter with Half-Bridge Submodules -- 1.5.3 Other Cascaded Converter Topologies -- 1.6 Summary -- References -- Chapter 2 Main-Circuit Design -- 2.1 Introduction -- 2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications -- 2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors -- 2.2.2 Basic Conduction Properties of Power Semiconductor Devices -- 2.2.3 P-N Junctions for Blocking -- 2.2.4 Conduction Properties and the Need for Carrier Injection -- 2.2.5 Switching Properties -- 2.2.6 Packaging -- 2.2.7 Reliability of Power Semiconductor Devices -- 2.2.8 Silicon Carbide Power Devices -- 2.3 Medium-Voltage Capacitors for Submodules -- 2.3.1 Design and Fabrication -- 2.3.2 Self-Healing and Reliability -- 2.4 Arm Inductors -- 2.5 Submodule Configurations -- 2.5.1 Existing Half-Bridge Submodule Realizations -- 2.5.2 Clamped Single-Submodule -- 2.5.3 Clamped Double-Submodule -- 2.5.4 Unipolar-Voltage Full-Bridge Submodule -- 2.5.5 Five-Level Cross-Connected Submodule -- 2.5.6 Three-Level Cross-Connected Submodule -- 2.5.7 Double Submodule -- 2.5.8 Semi-Full-Bridge Submodule -- 2.5.9 Soft-Switching Submodules -- 2.6 Choice of Main-Circuit Parameters -- 2.6.1 Main Input Data
2.6.2 Choice of Power Semiconductor Devices -- 2.6.3 Choice of the Number of Submodules -- 2.6.4 Choice of Submodule Capacitance -- 2.6.5 Choice of Arm Inductance -- 2.7 Handling of Redundant and Faulty Submodules -- 2.7.1 Method 1 -- 2.7.2 Method 2 -- 2.7.3 Comparison of Method 1 and Method 2 -- 2.7.4 Handling of Redundancy Using IGBT Stacks -- 2.8 Auxiliary Power Supplies for Submodules -- 2.8.1 Using the Submodule Capacitor as Power Source -- 2.8.2 Power Supplies with High-Voltage Inputs -- 2.8.3 The Tapped-Inductor Buck Converter -- 2.9 Start-Up Procedures -- 2.10 Summary -- References -- Chapter 3 Dynamics and Control -- 3.1 Introduction -- 3.2 Fundamentals -- 3.2.1 Arms -- 3.2.2 Submodules -- 3.2.3 AC Bus -- 3.2.4 DC Bus -- 3.2.5 Currents -- 3.3 Converter Operating Principle and Averaged Dynamic Model -- 3.3.1 Dynamic Relations for the Currents -- 3.3.2 Selection of the Mean Sum Capacitor Voltages -- 3.3.3 Averaging Principle -- 3.3.4 Ideal Selection of the Insertion Indices -- 3.3.5 Sum-Capacitor-Voltage Ripples -- 3.3.6 Maximum Output Voltage -- 3.3.7 DC-Bus Dynamics -- 3.3.8 Time Delays -- 3.4 Per-Phase Output-Current Control -- 3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller -- 3.4.2 Resonant Filters and Generalized Integrators -- 3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller -- 3.4.4 Parameter Selection for a PR Current Controller -- 3.4.5 Output-Current Controller Design -- 3.5 Arm-Balancing (Internal) Control -- 3.5.1 Circulating-Current Control -- 3.5.2 Direct Voltage Control -- 3.5.3 Closed-Loop Voltage Control -- 3.5.4 Open-Loop Voltage Control -- 3.5.5 Hybrid Voltage Control -- 3.6 Three-Phase Systems -- 3.6.1 Balanced Three-Phase Systems -- 3.6.2 Imbalanced Three-Phase Systems -- 3.6.3 Instantaneous Active Power -- 3.6.4 Wye (Y) and Delta ( ) Connections -- 3.6.5 Harmonics -- 3.6.6 Space Vectors
3.6.7 Instantaneous Power -- 3.6.8 Selection of the Space-Vector Scaling Constant -- 3.7 Vector Output-Current Control -- 3.7.1 PR (PI) Controller -- 3.7.2 Reference-Vector Saturation -- 3.7.3 Transformations -- 3.7.4 Zero-Sequence Injection -- 3.8 Higher-Level Control -- 3.8.1 Phase-Locked Loop -- 3.8.2 Open-Loop Active- and Reactive-Power Control -- 3.8.3 DC-Bus-Voltage Control -- 3.8.4 Power-Synchronization Control -- 3.9 Control Architectures -- 3.9.1 Communication Network -- 3.9.2 Fault-Tolerant Communication Networks -- 3.10 Summary -- References -- Chapter 4 Control under Unbalanced Grid Conditions -- 4.1 Introduction -- 4.2 Grid Requirements -- 4.3 Shortcomings of Conventional Vector Control -- 4.3.1 PLL with Notch Filter -- 4.4 Positive/Negative-Sequence Extraction -- 4.4.1 DDSRF-PNSE -- 4.4.2 DSOGI-PNSE -- 4.5 Injection Reference Strategy -- 4.5.1 PSI with PSI-LVRT Compliance -- 4.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance -- 4.6 Component-Based Vector Output-Current Control -- 4.6.1 DDSRF-PNSE-Based Control -- 4.6.2 DSOGI-PNSE-Based Control -- 4.7 Summary -- References -- Chapter 5 Modulation and Submodule Energy Balancing -- 5.1 Introduction -- 5.2 Fundamentals of Pulse-Width Modulation -- 5.2.1 Basic Concepts -- 5.2.2 Performance of Modulation Methods -- 5.2.3 Reference Third-Harmonic Injection in Three-Phase Systems -- 5.3 Carrier-Based Modulation Methods -- 5.3.1 Two-Level Carrier-Based Modulation -- 5.3.2 Analysis by Fourier Series Expansion -- 5.3.3 Polyphase Systems -- 5.4 Multilevel Carrier-Based Modulation -- 5.4.1 Phase-Shifted Carriers -- 5.4.2 Level-Shifted Carriers -- 5.5 Nearest-Level Control -- 5.6 Submodule Energy Balancing Methods -- 5.6.1 Submodule Sorting -- 5.6.2 Predictive Sorting -- 5.6.3 Tolerance Band Methods
5.6.4 Individual Submodule-Capacitor-Voltage Control -- 5.7 Summary -- References -- Chapter 6 Modeling and Simulation -- 6.1 Introduction -- 6.2 Leg-Level Averaged (LLA) Model -- 6.3 Arm-Level Averaged (ALA) Model -- 6.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK) -- 6.4 Submodule-Level Averaged (SLA) Model -- 6.4.1 Vectorized Simulation Models -- 6.5 Submodule-Level Switched (SLS) Model -- 6.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation -- 6.6 Summary -- References -- Chapter 7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application -- 7.1 Introduction -- 7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes -- 7.2.1 UK's Regulatory Framework for Offshore Transmission Assets -- 7.2.2 Germany's Regulatory Framework for Offshore Transmission Assets -- 7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals -- 7.4 Components of an Offshore MMC-HVDC Converter -- 7.4.1 Offshore HVDC Converter Transformer -- 7.4.2 Phase Reactors and DC Pole Reactors -- 7.4.3 Converter Valve Hall -- 7.4.4 Control and Protection Systems -- 7.4.5 AC and DC Switchyards -- 7.4.6 Auxiliary Systems -- 7.5 Offshore Platform Concepts -- 7.5.1 Accommodation Offshore -- 7.6 Onshore HVDC Converter -- 7.6.1 Onshore DC Choppers/Dynamic Brakers -- 7.6.2 Inrush Current Limiter Resistors -- 7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP -- 7.7.1 Conceptual and Feasibility Studies with Steady-State Load Flow -- 7.7.2 Short-Circuit Analysis -- 7.7.3 Dynamic System Performance Analysis -- 7.7.4 Transient Stability Analysis -- 7.7.5 Harmonic Analysis -- 7.7.6 Ferroresonance -- 7.8 Summary -- References -- Chapter 8 MMC-HVDC Standards and Commissioning Procedures -- 8.1 Introduction
8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology -- 8.2.1 Hierarchy of Available and Applicable Codes, Standards and Best Practice Recommendations for MMC-HVDC Projects -- 8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests -- 8.3.1 Pre-Commissioning -- 8.3.2 Offsite Commissioning Tests or Factory Acceptance Tests -- 8.3.3 Onsite Testing and Site Acceptance Tests -- 8.3.4 Onsite Energizing Tests -- 8.4 Summary -- References -- Chapter 9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies -- 9.1 Introduction -- 9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency -- 9.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency -- 9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency -- 9.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer -- 9.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC -- 9.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC -- 9.5 MMC-HVDC Component Failures -- 9.5.1 Submodule Semiconductor Failures -- 9.5.2 Submodule Capacitor Failure -- 9.5.3 Phase Reactor Failure -- 9.5.4 Converter Transformer Failure -- 9.6 MMC-HVDC Protection Systems -- 9.6.1 AC-Side Protections -- 9.6.2 DC-Side Protections -- 9.6.3 DC-Bus Undervoltage, Overvoltage Protection -- 9.6.4 DC-Bus Voltage Unbalance Protection -- 9.6.5 DC-Bus Overcurrent Protection -- 9.6.6 DC Bus Differential Protection -- 9.6.7 Valve and Submodule Protection -- 9.6.8 Transformer Protection -- 9.6.9 Primary Converter AC Breaker Failure Protection -- 9.7 Summary -- References -- Chapter 10 MMC-HVDC Transmission Technology and MTDC Networks -- 10.1 Introduction -- 10.2 LCC-HVDC Transmission Technology
10.3 Two-Level VSC-HVDC Transmission Technology
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Sharifabadi, Kamran Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems New York : John Wiley & Sons, Incorporated,c2016 9781118851562
Subject Electric power transmission--Direct current--Equipment and supplies
Electronic books
Alt Author Harnefors, Lennart
Teodorescu, Remus
Norrga, Staffan
Nee, Hans Peter
Record:   Prev Next