Record:   Prev Next
Author Noroski, Joseph H
Title Collision energy dependence of the reactions of metastable neon with small molecules
book jacket
Descript 182 p
Note Source: Dissertation Abstracts International, Volume: 70-10, Section: B, page: 6233
Adviser: Kenneth Jordan
Thesis (Ph.D.)--University of Pittsburgh, 2009
The reaction dynamics of Ne* (2p53 s 3P2, 3 P0) + X → [NeX]+ + e- (X = H2, CO, N2, NO, O2, CO 2, and C2H2) were studied with supersonic beams at various collision energies (E) via electron spectroscopy. Increasing E decreases the interparticle distance at which ionization occurs, allowing for exploration of the reaction potential energy surfaces via the kinetic energy epsilon of the ejected electron. Data were fit to give vibrational populations and line shifts (Deltaepsilons ), the difference between the excitation energy of Ne* and the vibronic energy of the target molecules, where vibronic excitation is due to Ne*. The resulting populations were compared to calculated or experimental Franck-Condon factors (FCfs), and vibrational progressions were identified. Deviation from Franck-Condon (FC) behavior was observed in all cases except for C2H 2, and all spectra at all E showed a blue shift except CO2. With increasing E, Deltaepsilons for H2 +, CO+, and N2 + increased with increasing E, while Deltaepsilon s decreased for NO+ and C2H2 +. The CO2+ spectra revealed a nearly constant red shift for the lowest three E and a blue shift for the highest E. O2+ showed a very small blue shift, but the O2+ populations were not determined due to an underlying continuum
Penning, excitation transfer, and ion-pair mechanisms are the most widely accepted for the reactions of metastable atoms. The closed-shell structure of H2, CO, and N2 and the large, increasing Deltaepsilon s suggest that their Ne* reactions proceed via the Penning mechanism. The open-shell structure of NO and its decreasing Deltaepsilons indicates changing dynamics and possibly also competition between all three mechanisms for Ne* + NO. The very small Deltaepsilons for O 2+ implies the excitation transfer mechanism for Ne* + O2. Ne* reactions with CO2 and C2H 2 both exhibited constant Deltaepsilons values for more than one E. This suggests that an excitation transfer mechanism is at work in these systems, but changes in Deltaepsilons at other E indicate that competing mechanisms may also be relevant
Lastly, a retrospective on authoring a solutions manual for a freshman chemistry textbook is offered
School code: 0178
Host Item Dissertation Abstracts International 70-10B
Subject Chemistry, Physical
Physics, Molecular
Alt Author University of Pittsburgh
Record:   Prev Next