Record:   Prev Next
Author Safak, Mehmet
Title Digital Communications
Imprint New York : John Wiley & Sons, Incorporated, 2017
©2016
book jacket
Descript 1 online resource (909 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Title Page -- Copyright Page -- Contents -- Preface -- List of Abbreviations -- About the Companion Website -- Chapter 1 Signal Analysis -- 1.1 Relationship Between Time and Frequency Characteristics of Signals -- 1.1.1 Fourier Series -- 1.1.2 Fourier Transform -- 1.1.3 Fourier Transform of Periodic Functions -- 1.2 Power Spectal Density (PSD) and Energy Spectral Density (ESD) -- 1.2.1 Energy Signals Versus Power Signals -- 1.2.2 Autocorrelation Function and Spectral Density -- 1.3 Random Signals -- 1.3.1 Random Variables -- 1.3.2 Random Processes -- 1.4 Signal Transmission Through Linear Systems -- References -- Problems -- Chapter 2 Antennas -- 2.1 Hertz Dipole -- 2.1.1 Near- and Far-Field Regions -- 2.2 Linear Dipole Antenna -- 2.3 Aperture Antennas -- 2.4 Isotropic and Omnidirectional Antennas -- 2.5 Antenna Parameters -- 2.5.1 Polarization -- 2.5.2 Radiation Pattern -- 2.5.3 Directivity and Beamwidth -- 2.5.4 Gain -- 2.5.5 Effective Receiving Area -- 2.5.6 Effective Antenna Height and Polarization Matching -- 2.5.7 Impedance Matching -- References -- Problems -- Chapter 3 Channel Modeling -- 3.1 Wave Propagation in Low- and Medium-Frequency Bands (Surface Waves) -- 3.2 Wave Propagation in the HF Band (Sky Waves) -- 3.3 Wave Propagation in VHF and UHF Bands -- 3.3.1 Free-Space Propagation -- 3.3.2 Line-Of-Sight (LOS) Propagation -- 3.3.3 Fresnel Zones -- 3.3.4 Knife-Edge Diffraction -- 3.3.5 Propagation Over the Earth Surface -- 3.4 Wave Propagation in SHF and EHF Bands -- 3.4.1 Atmospheric Absorption Losses -- 3.4.2 Rain Attenuation -- 3.5 Tropospheric Refraction -- 3.5.1 Ducting -- 3.5.2 Radio Horizon -- 3.6 Outdoor Path-Loss Models -- 3.6.1 Hata Model -- 3.6.2 COST 231 Extension to Hata Model -- 3.6.3 Erceg Model -- 3.7 Indoor Propagation Models -- 3.7.1 Site-General Indoor Path Loss Models -- 3.7.2 Signal Penetration Into Buildings
3.8 Propagation in Vegetation -- References -- Problems -- Chapter 4 Receiver System Noise -- 4.1 Thermal Noise -- 4.2 Equivalent Noise Temperature -- 4.2.1 Equivalent Noise Temperature of Cascaded Subsystems -- 4.3 Noise Figure -- 4.3.1 Noise Figure of a Lossy Device -- 4.4 External Noise and Antenna Noise Temperature -- 4.4.1 Point Noise Sources -- 4.4.2 Extended Noise Sources and Brightness Temperature -- 4.4.3 Antenna Noise Figure -- 4.4.4 Effects of Lossy Propagation Medium on the Observed Brightness Temperature -- 4.4.5 Brightness Temperature of Some Extended Noise Sources -- 4.4.6 Man-Made Noise -- 4.5 System Noise Temperature -- 4.6 Additive White Gaussian Noise Channel -- References -- Problems -- Chapter 5 Pulse Modulation -- 5.1 Analog-to-Digital Conversion -- 5.1.1 Sampling -- 5.1.2 Quantization -- 5.1.3 Encoding -- 5.1.4 Pulse Modulation Schemes -- 5.2 Time-Division Multiplexing -- 5.2.1 Time Division Multiplexing -- 5.2.2 TDM Hierarchies -- 5.2.3 Statistical Time-Division Multiplexing -- 5.3 Pulse-Code Modulation (PCM) Systems -- 5.3.1 PCM Transmitter -- 5.3.2 Regenerative Repeater -- 5.3.3 PCM Receiver -- 5.4 Differential Quantization Techniques -- 5.4.1 Fundamentals of Differential Quantization -- 5.4.2 Linear Prediction -- 5.4.3 Differential PCM (DPCM) -- 5.4.4 Delta Modulation -- 5.4.5 Audio Coding -- 5.4.6 Video Coding -- References -- Problems -- Chapter 6 Baseband Transmission -- 6.1 The Channel -- 6.1.1 Additive White Gaussian Noise (AWGN) Channel -- 6.2 Matched Filter -- 6.2.1 Matched Filter Versus Correlation Receiver -- 6.2.2 Error Probability For Matched-Filtering in AWGN Channel. -- 6.3 Baseband M-ary PAM Transmission -- 6.4 Intersymbol Interference -- 6.4.1 Optimum Transmit and Receive Filters in an Equalized Channel -- 6.5 Nyquist Criterion for Distortionless Baseband Binary Transmission In a ISI Channel
6.5.1 Ideal Nyquist Filter -- 6.5.2 Raised-Cosine Filter -- 6.6 Correlative-Level Coding (Partial-Response Signalling) -- 6.6.1 Probability of Error in Duobinary Signaling -- 6.6.2 Generalized Form of Partial Response Signaling (PRS) -- 6.7 Equalization in Digital Transmission Systems -- References -- Problems -- Chapter 7 Optimum Receiver in AWGN Channel -- 7.1 Introduction -- 7.2 Geometric Representation of Signals -- 7.3 Coherent Demodulation in AWGN Channels -- 7.3.1 Coherent Detection of Signals in AWGN Channels -- 7.4 Probability of Error -- 7.4.1 Union Bound on Error Probability -- 7.4.2 Bit Error Versus Symbol Error -- References -- Problems -- Chapter 8 Passband Modulation Techniques -- 8.1 PSD of Passband Signals -- 8.1.1 Bandwidth -- 8.1.2 Bandwidth Efficiency -- 8.2 Synchronization -- 8.2.1 Time and Frequency Standards -- 8.3 Coherently Detected Passband Modulations -- 8.3.1 Amplitude Shift Keying (ASK) -- 8.3.2 Phase Shift Keying (PSK) -- 8.3.3 Quadrature Amplitude Modulation (QAM) -- 8.3.4 Coherent Orthogonal Frequency Shift Keying (FSK) -- 8.4 Noncoherently Detected Passband Modulations -- 8.4.1 Differential Phase Shift Keying (DPSK) -- 8.4.2 Noncoherent Orthogonal Frequency Shift Keying (FSK) -- 8.5 Comparison of Modulation Techniques -- References -- Problems -- Chapter 9 Error Control Coding -- 9.1 Introduction to Channel Coding -- 9.2 Maximum Likelihood Decoding (MLD) with Hard and Soft Decisions -- 9.3 Linear Block Codes -- 9.3.1 Generator and Parity Check Matrices -- 9.3.2 Error Detection and Correction Capability of a Block Code -- 9.3.3 Syndrome Decoding of Linear Block Codes -- 9.3.4 Bit Error Probability of Block Codes with Hard-Decision Decoding -- 9.3.5 Bit Error Probability of Block Codes with Soft-Decision Decoding -- 9.3.6 Channel Coding Theorem -- 9.3.7 Hamming Codes -- 9.4 Cyclic Codes
9.4.1 Generator Polynomial and Encoding of Cyclic Codes -- 9.4.2 Parity-Check Polynomial -- 9.4.3 Syndrome Decoding of Cyclic Codes -- 9.4.4 Cyclic Block Codes -- 9.5 Burst Error Correction -- 9.5.1 Interleaving -- 9.5.2 Reed-Solomon (RS) Codes -- 9.5.3 Low-Density Parity Check (LDPC) Codes -- 9.6 Convolutional Coding -- 9.6.1 A Rate- Convolutional Encoder -- 9.6.2 Impulse Response Representation of Convolutional Codes -- 9.6.3 Generator Polynomial Representation of Convolutional Codes -- 9.6.4 State and Trellis Diagram Representation of a Convolutional codes -- 9.6.5 Decoding of Convolutional Codes -- 9.6.6 Transfer Function and Free Distance -- 9.6.7 Error Probability of Convolutional Codes -- 9.6.8 Coding Gain of Convolutional Codes -- 9.7 Concatenated Coding -- 9.8 Turbo Codes -- 9.9 Automatic Repeat-Request (ARQ) -- 9.9.1 Undetected Error Probability -- 9.9.2 Basic ARQ Protocols -- 9.9.3 Hybrid ARQ Protocols -- Appendix 9A Shannon Limit For Hard-Decision and Soft-Decision Decoding -- References -- Problems -- Chapter 10 Broadband Transmission Techniques -- 10.1 Spread Spectrum -- 10.1.1 PN Sequences -- 10.1.2 Direct Sequence Spread Spectrum -- 10.1.3 Frequency Hopping Spread Spectrum -- 10.2 Orthogonal Frequency Division Multiplexing (OFDM) -- 10.2.1 OFDM Transmitter -- 10.2.2 OFDM Receiver -- 10.2.3 Intercarrier Interference (ICI) in OFDM Systems -- 10.2.4 Channel Estimation by Pilot Subcarriers -- 10.2.5 Synchronization of OFDM Systems -- 10.2.6 Peak-to-Average Power Ratio (PAPR) in OFDM -- 10.2.7 Multiple Access in OFDM Systems -- 10.2.8 Vulnerability of OFDM Systems to Impulsive Channel -- 10.2.9 Adaptive Modulation and Coding in OFDM -- Appendix 10A Frequency Domain Analysis of DSSS Signals -- Appendix 10B Time Domain Analysis of DSSS Signals -- Appendix 10C SIR inOFDMsystems -- References -- Problems -- Chapter 11 Fading Channels
11.1 Introduction -- 11.2 Characterisation of Multipath Fading Channels -- 11.2.1 Delay Spread -- 11.2.2 Doppler Spread -- 11.2.3 The Effect of Signal Characteristics on the Choice of a Channel Model -- 11.3 Modeling Fading and Shadowing -- 11.3.1 Rayleigh Fading -- 11.3.2 Rician Fading -- 11.3.3 Nakagami-m Fading -- 11.3.4 Log-Normal Shadowing -- 11.3.5 Composite Fading and Shadowing -- 11.3.6 Fade Statistics -- 11.4 Bit Error Probability in Frequency-Nonselective Slowly Fading Channels -- 11.4.1 Bit Error Probability for Binary Signaling -- 11.4.2 Moment Generating Function -- 11.4.3 Bit Error Probability for M-ary Signalling -- 11.4.4 Bit Error Probability in Composite Fading and Shadowing Channels -- 11.5 Frequency-Selective Slowly-Fading Channels -- 11.5.1 Tapped Delay-Line Channel Model -- 11.5.2 Rake Receiver -- 11.6 Resource Allocation in Fading Channels -- 11.6.1 Adaptive Coding and Modulation -- 11.6.2 Scheduling and Multi-User Diversity -- References -- Problems -- Chapter 12 Diversity and Combining Techniques -- 12.1 Antenna Arrays in Non-Fading Channels -- 12.1.1 SNR -- 12.2 Antenna Arrays in Fading Channels -- 12.3 Correlation Effects in Fading Channels -- 12.4 Diversity Order, Diversity Gain and Array Gain -- 12.4.1 Tradeoff Between the Maximum Eigenvalue and the Diversity Gain. -- 12.5 Ergodic and Outage Capacity in Fading Channels -- 12.5.1 Multiplexing Gain -- 12.6 Diversity and Combining -- 12.6.1 Combining Techniques for SIMO Systems -- 12.6.2 Transmit Diversity (MISO) -- References -- Problems -- Chapter 13 MIMO Systems -- 13.1 Channel Classification -- 13.2 MIMO Channels with Arbitrary Number of Transmit and Receive Antennas -- 13.3 Eigenvalues of the Random Wishart Matrix HHH -- 13.3.1 Uncorrelated Central Wishart Distribution -- 13.3.2 Correlated Central Wishart Distribution -- 13.4 A 2x2 MIMO Channel
13.5 Diversity Order of a MIMO System
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Safak, Mehmet Digital Communications New York : John Wiley & Sons, Incorporated,c2017 9781119091257
Subject Digital communications
Electronic books
Record:   Prev Next