Record:   Prev Next
Author Stachurski, Zbigniew H
Title Fundamentals of Amorphous Solids : Structure and Properties
Imprint Somerset : John Wiley & Sons, Incorporated, 2015
©2015
book jacket
Edition 1st ed
Descript 1 online resource (275 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- Fundamentals of Amorphous Solids -- Contents -- Preface -- Chapter 1 Spheres, Clusters and Packing of Spheres -- 1.1 Introduction -- 1.2 Geometry of Spheres -- 1.2.1 A Sphere and Its Neighbours -- 1.2.2 Neighbours by Touching -- 1.2.3 Hard and Soft Spheres -- 1.3 Geometry of Clusters -- 1.3.1 Regular Clusters -- 1.3.2 Irregular Clusters -- 1.3.3 Coordination of (1 + k) Clusters -- 1.3.3.1 Blocking Model for Cluster Formation -- 1.3.3.2 Fürth Model for Cluster Formation -- 1.3.4 Configuration of (1 + k) Clusters -- 1.3.4.1 Regular Clusters -- 1.3.4.2 Irregular Clusters -- 1.3.4.3 Closing Vector Based on Radial Vector Polygon -- 1.3.4.4 Physical Meaning of the Closing Vector, ζ -- 1.3.4.5 Spherical Harmonics -- 1.4 Geometry of Sphere Packings -- 1.4.1 Fixed and Loose Packings -- 1.4.2 Ordered Packing -- 1.4.3 Disordered Packing -- 1.4.4 Random Packing -- 1.4.5 Random Sequential Addition of Hard Spheres -- 1.4.6 Random Closed Packing of Spheres -- 1.4.7 Neighbours by Voronoi Tessellation -- 1.4.8 Neighbours by Coordination Shell -- 1.4.8.1 Pair Distribution Function -- 1.4.8.2 The Probability of Contacts -- 1.4.8.3 Contact Configuration Function -- 1.5 Ideal Amorphous Aolid (IAS) -- 1.6 Construction of an Ideal Amorphous Solid Class I -- 1.7 Elementary Theory of Amorphousness -- 1.7.1 Background -- 1.7.2 The Axioms -- 1.7.3 Conjecture -- 1.7.4 The Rules -- 1.7.5 Statistical Correspondence -- 1.8 Classes of Ideal Amorphous Solids -- 1.8.1 IAS Class I: Random Close Packing of Individual Atoms -- 1.8.2 IAS Class II: Random Close Packing of Linear Model Chains -- 1.8.3 IAS Class III: Random Close Packing of Three-Dimensionally cross-Linked Chains -- 1.9 Imperfections in IAS -- 1.9.1 Geometrical (local) Flaws -- 1.9.2 Statistical (global) Flaws -- 1.9.3 The Effect of Flaws on the Density of IAS -- 1.9.4 Short and Medium Range Order -- References
Books on Crystallography -- Books on Glasses -- Books on Random Walks -- Books on Sphere Packings -- Books on Crystal Imperfections -- Chapter 2 Characteristics of Sphere Packings -- 2.1 Geometrical Properties -- 2.1.1 The Coordination Distribution Function, Ψ(k) -- 2.1.2 Tetrahedricity -- 2.1.3 Voronoi Polyhedra Notation -- 2.1.4 Topology of Clusters -- 2.1.4.1 Ordered Clusters -- 2.1.4.2 Irregular Clusters -- 2.1.5 The Configuration Distribution Function, Φk(ζ) -- 2.1.6 The Volume Fraction -- 2.1.6.1 Regular Polyhedra -- 2.1.6.2 Irregular Polyhedra -- 2.1.7 The Packing Fraction -- 2.1.7.1 The Average Packing Fraction for the Round Cell -- 2.1.7.2 The Local Packing Fraction -- 2.1.7.3 The Limits of Packing Fraction -- 2.1.8 Representative Volume Element -- 2.1.9 Density of Single Phase -- 2.1.9.1 Density of Crystalline Solid -- 2.1.9.2 Density of Amorphous Solid -- 2.1.10 Density of a Composite -- 2.1.11 Solidity of Packing -- 2.2 X-ray Scattering -- 2.2.1 Introduction -- 2.2.2 Geometry of Diffraction and Scattering -- 2.2.3 Intensity of a Scattered Wave -- 2.2.3.1 Amorphous Solid -- 2.2.3.2 Ehrenfest Formula -- 2.2.3.3 Polyatomic Solid -- 2.2.4 Factors Affecting Integrated Scattered Intensity -- 2.2.4.1 Integrated Intensity of Powder Pattern Lines from Crystalline Body -- 2.2.4.2 Integrated Scattered Intensity from Monoatomic Body -- 2.3 Glass Transition Measured by Calorimetry -- References -- Chapter 3 Glassy Materials and Ideal Amorphous Solids -- 3.1 Introduction -- 3.1.1 Solidification -- 3.1.1.1 Solidification by Means of Crystallization -- 3.1.1.2 Solidification through Vitrification -- 3.1.2 Cognate Groups of Amorphous Materials (Glasses) -- 3.1.2.1 Metallic Glasses -- 3.1.2.2 Inorganic Glasses -- 3.1.2.3 Organic Glasses -- 3.1.2.4 Amorphous Thin Films -- 3.2 Summary of Models of Amorphous Solids -- 3.2.1 Lattice with Atomic Disorder
3.2.2 Disordered Clusters on Lattice -- 3.2.3 Geometric Models for Amorphous Networks -- 3.2.4 Packing of Regular but Incongruent Clusters -- 3.2.5 Irregular Clusters - Random Packing -- 3.2.6 Molecular Dynamics -- 3.2.7 Monte Carlo Method -- 3.3 IAS Model of a-Argon -- 3.3.1 IAS Parameters -- 3.3.2 Round Cell Simulation and Analysis -- 3.3.2.1 Coordination Distribution Function -- 3.3.2.2 Voronoi Volume and Configuration Distribution Functions -- 3.3.2.3 Radial Distribution Function -- 3.3.2.4 X-ray Scattering from the IAS Model -- 3.3.2.5 Crystalline and Amorphous Cluster -- 3.3.3 Summary of a-Ar IAS Structure -- 3.4 IAS Model of a-NiNb Alloy -- 3.4.1 Introduction -- 3.4.2 IAS Model of a-NiNb Alloy -- 3.4.2.1 Coordination Distribution Functions -- 3.4.2.2 Voronoi Volume Distribution -- 3.4.2.3 Pair Distribution Function -- 3.4.2.4 Probability of Contacts -- 3.4.3 X-ray Scattering from a-NiNb Alloy -- 3.4.3.1 Experimental Results -- 3.4.3.2 Theoretical Results -- 3.4.4 Density of a-Ni62-Nb38 Alloy -- 3.4.4.1 Crystalline Alloy -- 3.4.4.2 Amorphous Alloy -- 3.4.5 Summary of a-NiNb IAS Structure -- 3.5 IAS Model of a-MgCuGd Alloy -- 3.5.1 Physical Properties of the Elements -- 3.5.2 IAS Simulation of a-MgCuGd Alloy -- 3.5.2.1 Coordination Distribution Functions -- 3.5.2.2 Configuration Distribution Function -- 3.5.2.3 Radial Distribution Function -- 3.5.2.4 Probability of Contacts -- 3.5.2.5 Cluster Composition According to IAS -- 3.5.2.6 Cluster Composition According to MD -- 3.5.3 X-ray Scattering from a-Mg65-Cu25-Gd10 Alloy -- 3.5.3.1 Flat Plate X-ray Scattering Pattern -- 3.5.3.2 Calibration based on Si Powder Pattern -- 3.5.3.3 Uncertainties and Corrections -- 3.5.4 Density of Mg65-Cu25-Gd10 Alloy -- 3.5.4.1 Crystalline Alloy -- 3.5.4.2 Amorphous Alloy -- 3.5.5 Summary of a-MgCuGd IAS Structure -- 3.6 IAS Model of a-ZrTiCuNiBe Alloy
3.6.1 Transmission Electron Microscopy -- 3.6.2 IAS Simulation of Amorphous a-ZrTiCuNiBe Alloy -- 3.6.2.1 Coordination Distribution Function -- 3.6.2.2 Voronoi Volume Distribution -- 3.6.2.3 Radial Distribution Function -- 3.6.3 Atomic Probe of the a-ZrTiCuNiBe Alloy -- 3.6.3.1 Probability of Contacts -- 3.6.4 Selected Clusters from the a-ZrTiCuNiBe Alloy -- 3.6.5 X-ray Scattering from the a-ZrTiCuNiBe Alloy -- 3.6.6 Density of ZrTiCuNiBe Alloy -- 3.6.6.1 Crystalline Alloy -- 3.6.6.2 Amorphous Alloy -- 3.6.6.3 Vitreloy Alloys -- 3.6.7 Summary of a-ZrTiCuNiBe IAS Structure -- 3.7 IAS Model of a-Polyethylene (a-PE) -- 3.7.1 Radial Distribution Function -- 3.7.2 X-ray Scattering -- 3.7.2.1 Short-Range Order -- 3.7.3 Summary of a-PE IAS Structure -- 3.8 IAS Model of a-Silica (a-SiO2) -- 3.8.1 Molecular Parameters for SiO2 -- 3.8.2 IAS and United Atom Models for SiO2 -- 3.8.3 Summary of a-SiO2 IAS Structure -- 3.9 Chalcogenide Glasses -- 3.9.1 As12-Ge33-Se55 Chalcogenide Glass -- 3.9.2 Measured Coordination Distribution -- 3.9.3 Measured X-ray Scattering -- 3.9.4 Glass-Transition Temperature of AsGeSe Glasses -- 3.9.5 Models of Atomic Arrangements in AsGeSe Glass -- 3.9.5.1 IAS Model of AsGeSe Glass -- 3.9.5.2 Other Models of AsGeSe Glass -- 3.9.6 Summary of a-AsGeSe IAS Structure -- 3.10 Concluding Remarks -- 3.10.1 Chapter 3 -- 3.10.2 Chapter 2 -- References -- Chapter 4 Mechanical Behaviour -- 4.1 Introduction -- 4.2 Elasticity -- 4.2.1 Phenomenology -- 4.2.2 Continuum Mechanics -- 4.2.2.1 Calculation of Average Elastic Constants - Aggregate Theory -- 4.2.2.2 Green's Elastic Strain Energy -- 4.2.3 Atomistic Elasticity -- 4.2.3.1 Calculation of an Elastic Constant for Single Crystal of Argon -- 4.3 Elastic Properties of Amorphous Solids -- 4.3.1 Elastic Modulus of Amorphous Argon -- 4.4 Fracture -- 4.4.1 Phenomenology -- 4.4.2 Continuum Mechanics
4.4.2.1 Definition of Fracture Mechanics: Fracture Toughness -- 4.4.2.2 Elastic Strain Energy Release -- 4.4.2.3 Solid Surface Energy -- 4.4.2.4 Griffith's Fracture Stress -- 4.4.2.5 The Role of Defects -- 4.4.3 Atomistic Fracture Mechanics of Solids -- 4.4.3.1 Theoretical Cleavage Strength -- 4.4.3.2 Theoretical Shear Strength -- 4.5 Plasticity -- 4.5.1 Phenomenology -- 4.5.2 Continumm Mechanics -- 4.5.2.1 Tresca Yield Criterion -- 4.5.2.2 Huber-von Mises Criterion -- 4.5.3 Atomistic Mechanics of Crystalline Solids -- 4.5.3.1 Strain Hardening -- 4.5.3.2 Grain Boundary Strengthening -- 4.5.3.3 Solid Solution Hardening -- 4.5.3.4 Precipitation Hardening -- 4.5.3.5 Mechanisms of Plastic Flow in Crystalline Materials -- 4.5.3.6 Displacement of Atoms Around Dislocations -- 4.5.3.7 Critical Shear Stress to Move Dislocation -- 4.6 Plasticity in Plasticity: Amorphous Solids -- 4.6.1 Plastic Deformation by Shear Band Propagation -- 4.7 Superplasticity -- 4.7.1 Phenomenology -- 4.7.2 Continuum Mechanics -- 4.7.3 Superplasticity in Bulk Metallic Glasses -- 4.7.3.1 Calculation of Strain Rate for Superplasticity -- 4.7.4 Concordant Deformation Mechanism -- 4.7.4.1 Density Variation in Amorphous Solids -- 4.7.4.2 The 'Inclusion' Problem -- 4.7.4.3 The System without Transformation -- 4.7.4.4 The System with Transformation -- 4.7.4.5 Conclusions -- 4.8 Viscoelasticity -- 4.8.1 Phenomenology -- 4.8.2 Time- and Temperature-Dependent Behaviour -- 4.8.2.1 Definitions of Viscosity -- 4.8.2.2 Order of Magnitude Calculations -- 4.8.3 Temperature Effect on Viscoelastic Behaviour -- 4.8.3.1 Arrhenius Behaviour -- 4.8.3.2 Vogel-Fulcher-Tammann Behaviour -- References -- Index -- EULA
Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorphous solids, based on topology- and statistics-governed rules of three-dimensional sphere packing, which leads to structures with no short, mid or long-range order. This general model is then concretized to the description of specific compounds in the four fundamental classes of amorphous solids, as well as amorphous polyethylene and poly(methyl)methacrylate, emphasizing its versatility and descriptive power. Finally, he includes example applications to indicate the abundance of amorphous materials in modern-day technology, thus illustrating the importance of a better understanding of their structure and properties. Equally ideal as supplementary reading in courses on crystallography, mineralogy, solid state physics, and materials science where amorphous materials have played only a minor role until now
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Stachurski, Zbigniew H. Fundamentals of Amorphous Solids : Structure and Properties Somerset : John Wiley & Sons, Incorporated,c2015 9783527337071
Subject Amorphous substances
Electronic books
Record:   Prev Next