Record:   Prev Next
Author Shaik, Sason
Title Iron-Containing Enzymes : Versatile Catalysts of Hydroxylation Reactions in Nature
Imprint Cambridge : Royal Society of Chemistry, 2011
©2011
book jacket
Edition 1st ed
Descript 1 online resource (463 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Iron-Containing Enzymes -- Contents -- Chapter 1 Experimental and Computational Studies on the Catalytic Mechanism of Non-heme Iron Dioxygenases -- 1.1 Introduction -- 1.2 α-Ketoglutarate Dependent Dioxygenases (αKDD) and Halogenases (αKDH) -- 1.2.1 Taurine/α-Ketoglutarate Dioxygenase (TauD) -- 1.2.2 AlkB Repair Enzymes -- 1.2.3 Prolyl-4-hydroxylase (P4H) -- 1.2.4 α-Ketoglutarate Dependent Halogenases (αKDH) -- 1.3 Cysteine Dioxygenase (CDO) -- 1.4 Isopenicillin N Synthase (IPNS) -- 1.5 1-Aminocyclopropane-1-carboxylic Acid Oxidase (ACCO) -- 1.6 Rieske Dioxygenases -- 1.7 Extradiol and Intradiol Dioxygenases -- 1.8 Conclusion -- References -- Chapter 2 Non-heme Iron-Dependent Dioxygenases: Mechanism and Structure -- 2.1 Introduction -- 2.2 Dioxygenases Catalysing Oxidative C-C Cleavage Reactions -- 2.2.1 Intradiol Catechol Dioxygenases -- 2.2.2 Extradiol Catechol Dioxygenases -- 2.2.3 Carotenoid Cleavage Dioxygenases -- 2.2.4 Oxidative Cleavage of Aliphatic Substrates -- 2.3 Dioxygenases Catalysing Formation of Peroxides: Lipoxygenases -- 2.4 Dioxygenases Catalysing Hydroxylation Reactions -- 2.4.1 α-Ketoglutarate-Dependent Dioxygenases -- 2.4.2 Arene (Rieske) Dioxygenases -- 2.5 Conclusion and Summary -- References -- Chapter 3 Transient Iron Species in the Catalytic Mechanism of the Archetypal α-Ketoglutarate-Dependent Dioxygenase, TauD -- 3.1 Introduction -- 3.2 Structure of the TauD Active Site -- 3.2.1 Metal Binding to TauD Apoprotein -- 3.2.2 Substrate Binding to TauD -- 3.2.3 Characterization of the NO-Bound Quaternary Complex -- 3.3 The Fe(IV)-oxo Species -- 3.3.1 Experimental Detection of Fe(IV)-oxo -- 3.3.2 Electronic Configuration of the Fe(IV)-oxo Species -- 3.3.3 Hydrogen Atom Abstraction by Fe(IV)-oxo -- 3.3.4 Thermodynamics of Hydrogen Atom Abstraction by Fe(IV)-oxo -- 3.4 Fe(III)-O(H) Species and Oxygen Transfer -- 3.5 Conclusions
Acknowledgements -- References -- Chapter 4 Density Functional Theory Studies on Non-heme Iron Enzymes -- 4.1 Introduction -- 4.1.1 Reactions Catalysed by Non-heme Iron Enzymes and their Biological Significance -- 4.1.2 Iron Binding Sites -- 4.2 Computational Methods -- 4.3 Dioxygen Binding and Generation of Peroxo Intermediates -- 4.3.1 O2 Binding with Oxidation of Fe(II) -- 4.3.2 O2 Binding with Oxidation of the Organic Substrate -- 4.3.3 O2 Binding with Oxidation of External Reductants -- 4.4 Strategies for O-O Bond Cleavage -- 4.4.1 Heterolytic O-O Bond Cleavage Leading to Fe(IV)=O -- 4.4.2 Homolytic O-O Bond Cleavage Leading to R-O -- 4.4.3 Heterolytic O-O Bond Cleavage in Fe(III)-OOH -- 4.5 Reactions of the High-Valent Intermediates -- 4.5.1 Oxygenation by Fe(IV)=O -- 4.5.2 Oxidation by Fe(IV)=O -- 4.5.3 Reactions of R-O -- 4.6 Origins of Chemoselectivity - The Role of Negative Catalysis -- 4.7 Conclusions -- References -- Chapter 5 Theoretical Spectroscopies of Iron-Containing Enzymes and Biomimetics -- 5.1 Introduction -- 5.2 Mössbauer Spectroscopy -- 5.2.1 Theoretical Prediction of Mössbauer Parameters -- 5.2.2 Examples from the Literature -- 5.3 Nuclear Resonance Vibrational Spectroscopy -- 5.3.1 Examples from the Literature -- 5.4 Electron Paramagnetic Resonance -- 5.4.1 Theoretical EPR Spectroscopy -- 5.4.2 Examples from the Literature -- 5.5 Absorption Spectroscopy -- 5.5.1 Theoretical Prediction of Absorption Spectroscopy -- 5.5.2 Examples from the Literature -- 5.6 X-Ray Spectroscopy -- 5.6.1 Theoretical Prediction of Metal and Ligand K-Edge Spectra -- 5.6.2 Examples from the Literature -- 5.7 Conclusion -- References -- Chapter 6 Bioinspired Non-heme Iron Catalysts in C-H and C=C Oxidation Reactions -- 6.1 Biological Precedents -- 6.1.1 Oxidative Iron Proteins -- 6.1.2 Cytochrome P450 -- 6.1.3 Rieske Dioxygenases
6.2 Non-heme Iron Complexes as Bioinspired Catalysts -- 6.2.1 Oxidation of Alkanes (C-H Bonds) by Non-heme Iron Complexes -- 6.2.2 Oxidation of Alkenes (C=C Double Bonds) by Non-heme Iron Complexes -- 6.3 Reaction Mechanisms in Catalytic C-H and C=C Oxidation Reactions Mediated by Complexes with N-Rich Ligands -- 6.3.1 The Initially Formed FeIII-OOH and its Cleavage Products -- 6.3.2 Olefin Oxidations: Epoxidation and cis-Dihydroxylation -- 6.3.3 Alkane Oxidations -- 6.4 Conclusions -- References -- Chapter 7 Application of Magnetic Circular Dichroism, X-Ray Absorption Spectroscopy and Extended X-Ray Absorption Fine Structure in Determining Geometric and Electronic Structure of Non-heme Iron(IV)-oxo Enzymatic Intermediates and Related Synthetic Models -- 7.1 Introduction -- 7.1.1 Magnetic Circular Dichroism (MCD) -- 7.1.2 X-Ray Absorption Spectroscopy and Extended X-Ray Absorption Fine Structure -- 7.2 MCD of Iron(IV)-oxo Complexes -- 7.2.1 [FeIV=O(TMC)(NCCH3)]2+ -- 7.2.2 Iron(IV)-oxo MCD: Varying Axial and Equatorial Ligands -- 7.2.3 Vibronic Progression in MCD -- 7.3 XAS and EXAFS of Iron(IV)-oxo Intermediates and Synthetic Model Complexes -- 7.3.1 Enzymatic Catalytic Cycle Intermediates -- 7.3.2 Model Complexes -- 7.4 Parting Thoughts -- References -- Chapter 8 Structure, Mechanism and Function of Cytochrome P450 Enzymes -- 8.1 Introduction -- 8.2 Cytochromes P450 - A Brief History -- 8.3 Optical and Spectroscopic Features -- 8.4 Cytochrome P450 Catalytic Cycle -- 8.5 Biological Diversity -- 8.6 Cytochrome P450 Redox Partner Systems -- 8.7 Cytochrome P450 Structure -- 8.8 Physiological Roles of Cytochromes P450 -- 8.9 Cytochrome P450 Medicine and Biotechnology -- 8.10 Conclusions and Future Prospects -- References -- Chapter 9 Drug Metabolism by Cytochrome P450: A Tale of Multistate Reactivity -- 9.1 Introduction
9.2 Nomenclature of Cytochrome P450 Enzymes -- 9.3 Types of Drug Interactions -- 9.3.1 Induction -- 9.3.2 Inhibition -- 9.4 Important Isoforms of Human CYP -- 9.4.1 CYP1A2 Isoform -- 9.4.2 CYP2C8, CYP2C9 and CYP2C19 Isoforms -- 9.4.3 CYP2D6 Isoform -- 9.4.4 CYP3A4 Isoform -- 9.5 Examples of Generation of Various Metabolites from a Single CYP 450 -- 9.6 CYP 450 Structure -- 9.7 Catalytic Cycle of CYP 450 -- 9.8 Compound I of CYP 450: The Active Species -- 9.8.1 Axial Ligand Effect of Compound I -- 9.9 Reactivity of Compound I -- 9.10 Aliphatic C-H Hydroxylation by Compound I of CYP 450 -- 9.10.1 Rearrangement Mechanisms of Aliphatic Hydroxylation Reactions -- 9.11 C=C Epoxidation by Compound I of CYP 450 -- 9.12 Sulfoxidation Reaction by Compound I of CYP 450 -- 9.13 Aromatic Hydroxylation Reaction by Compound I of CYP 450 -- 9.14 Role of Water Molecule as Biocatalyst -- 9.15 Conclusion -- Acknowledgements -- References -- Chapter 10 Oxidation of Unnatural Substrates by Engineered Cytochrome P450cam -- 10.1 Introduction -- 10.2 Binding of the Substrate -- 10.3 CYP 450cam Reaction Cycle -- 10.4 Rational Design of the Active Site of CYP 450cam -- 10.5 Metabolism of Unnatural Substrates by CYP 450cam Variants -- 10.6 Binding of Unnatural Substrate, Hydroxylation, and Product Release -- 10.6.1 Small Hydrocarbons -- 10.6.2 Alkyl Benzenes -- 10.6.3 Polycyclic Aromatic Hydrocarbons (PAHs) -- 10.6.4 2-Ethylhexanol -- 10.6.5 Aromatic-Aliphatic Hydrocarbon, Phenylcyclohexane -- 10.6.6 Diphenylmethane -- 10.6.7 Valporic Acid -- 10.6.8 Terpenoids -- 10.6.9 Fused Benzene-Cycloalkane Compounds -- 10.6.10 Nitrogenous Compounds -- 10.6.11 Halogenated Compounds -- 10.7 Summary -- References -- Chapter 11 QM/MM Studies of Cytochrome P450 Systems: Application to Drug Metabolism -- 11.1 Introduction -- 11.2 CYPs and Drug Metabolism
11.3 Quantum Mechanical/Molecular Mechanical (QM/MM) Methods -- 11.4 QM/MM Studies of CYPs -- 11.4.1 Catalytic Cycle of CYP101 (CYP 450cam) -- 11.4.2 Hydroxylation of Camphor by CYP 450cam -- 11.4.3 Compound I Reactivity and Selectivity -- 11.4.4 Aromatic Hydroxylation -- 11.4.5 Other QM/MM Studies of CYPs -- 11.5 Conclusions -- References -- Chapter 12 Mechanism and Function of Tryptophan and Indoleamine Dioxygenases -- 12.1 Introduction -- 12.2 Biological and Physiological Function of Indoleamine Dioxygenase and Tryptophan Dioxygenase -- 12.3 Structures of TDO and IDO -- 12.3.1 Comparison of Overall Structure -- 12.3.2 Active Site Environments -- 12.4 Turnover and Inhibition -- 12.4.1 Steady State Kinetics -- 12.4.2 Inhibition of TDO and IDO -- 12.5 Catalytic Cycle -- 12.5.1 Formation of the Active Ternary Complex -- 12.5.2 Electrochemical Control of Substrate Reactivity -- 12.5.3 Heme Coordination Environment -- 12.5.4 Mechanism of Oxygen Insertion -- 12.6 Summary and Conclusions -- References -- Subject Index
This book explains the mechanism and function of mononuclear iron containing enzymes. These important bioprocess intermediates have great industrial potential
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Shaik, Sason Iron-Containing Enzymes : Versatile Catalysts of Hydroxylation Reactions in Nature Cambridge : Royal Society of Chemistry,c2011 9781849731812
Subject Hydroxylation.;Catalysts.;Enzymes
Electronic books
Alt Author Munro, Andrew W
Sen, Saptaswa
Mowat, Chris
Nam, Wonwoo
Derat, Etienne
Bugg, Tim
Proshlyakov, Denis A
Hausinger, Robert P
Straganz, Grit D
Record:   Prev Next