LEADER 00000nam a22005893i 4500 
001    EBC1185662 
003    MiAaPQ 
005    20200713055244.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2011    xx      o     ||||0 eng d 
020    9781849732987|q(electronic bk.) 
020    |z9781849731812 
035    (MiAaPQ)EBC1185662 
035    (Au-PeEL)EBL1185662 
035    (CaPaEBR)ebr10627632 
035    (CaONFJC)MIL872327 
035    (OCoLC)843641475 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QD281.H85 -- I76 2011eb 
082 0  572.7517 
100 1  Shaik, Sason 
245 10 Iron-Containing Enzymes :|bVersatile Catalysts of 
       Hydroxylation Reactions in Nature 
250    1st ed 
264  1 Cambridge :|bRoyal Society of Chemistry,|c2011 
264  4 |c©2011 
300    1 online resource (463 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Iron-Containing Enzymes -- Contents -- Chapter 1 
       Experimental and Computational Studies on the Catalytic 
       Mechanism of Non-heme Iron Dioxygenases -- 1.1 
       Introduction -- 1.2 α-Ketoglutarate Dependent Dioxygenases
       (αKDD) and Halogenases (αKDH) -- 1.2.1 Taurine/α-
       Ketoglutarate Dioxygenase (TauD) -- 1.2.2 AlkB Repair 
       Enzymes -- 1.2.3 Prolyl-4-hydroxylase (P4H) -- 1.2.4 α-
       Ketoglutarate Dependent Halogenases (αKDH) -- 1.3 Cysteine
       Dioxygenase (CDO) -- 1.4 Isopenicillin N Synthase (IPNS) -
       - 1.5 1-Aminocyclopropane-1-carboxylic Acid Oxidase (ACCO)
       -- 1.6 Rieske Dioxygenases -- 1.7 Extradiol and Intradiol 
       Dioxygenases -- 1.8 Conclusion -- References -- Chapter 2 
       Non-heme Iron-Dependent Dioxygenases: Mechanism and 
       Structure -- 2.1 Introduction -- 2.2 Dioxygenases 
       Catalysing Oxidative C-C Cleavage Reactions -- 2.2.1 
       Intradiol Catechol Dioxygenases -- 2.2.2 Extradiol 
       Catechol Dioxygenases -- 2.2.3 Carotenoid Cleavage 
       Dioxygenases -- 2.2.4 Oxidative Cleavage of Aliphatic 
       Substrates -- 2.3 Dioxygenases Catalysing Formation of 
       Peroxides: Lipoxygenases -- 2.4 Dioxygenases Catalysing 
       Hydroxylation Reactions -- 2.4.1 α-Ketoglutarate-Dependent
       Dioxygenases -- 2.4.2 Arene (Rieske) Dioxygenases -- 2.5 
       Conclusion and Summary -- References -- Chapter 3 
       Transient Iron Species in the Catalytic Mechanism of the 
       Archetypal α-Ketoglutarate-Dependent Dioxygenase, TauD -- 
       3.1 Introduction -- 3.2 Structure of the TauD Active Site 
       -- 3.2.1 Metal Binding to TauD Apoprotein -- 3.2.2 
       Substrate Binding to TauD -- 3.2.3 Characterization of the
       NO-Bound Quaternary Complex -- 3.3 The Fe(IV)-oxo Species 
       -- 3.3.1 Experimental Detection of Fe(IV)-oxo -- 3.3.2 
       Electronic Configuration of the Fe(IV)-oxo Species -- 
       3.3.3 Hydrogen Atom Abstraction by Fe(IV)-oxo -- 3.3.4 
       Thermodynamics of Hydrogen Atom Abstraction by Fe(IV)-oxo 
       -- 3.4 Fe(III)-O(H) Species and Oxygen Transfer -- 3.5 
       Conclusions 
505 8  Acknowledgements -- References -- Chapter 4 Density 
       Functional Theory Studies on Non-heme Iron Enzymes -- 4.1 
       Introduction -- 4.1.1 Reactions Catalysed by Non-heme Iron
       Enzymes and their Biological Significance -- 4.1.2 Iron 
       Binding Sites -- 4.2 Computational Methods -- 4.3 Dioxygen
       Binding and Generation of Peroxo Intermediates -- 4.3.1 O2
       Binding with Oxidation of Fe(II) -- 4.3.2 O2 Binding with 
       Oxidation of the Organic Substrate -- 4.3.3 O2 Binding 
       with Oxidation of External Reductants -- 4.4 Strategies 
       for O-O Bond Cleavage -- 4.4.1 Heterolytic O-O Bond 
       Cleavage Leading to Fe(IV)=O -- 4.4.2 Homolytic O-O Bond 
       Cleavage Leading to R-O -- 4.4.3 Heterolytic O-O Bond 
       Cleavage in Fe(III)-OOH -- 4.5 Reactions of the High-
       Valent Intermediates -- 4.5.1 Oxygenation by Fe(IV)=O -- 
       4.5.2 Oxidation by Fe(IV)=O -- 4.5.3 Reactions of R-O -- 
       4.6 Origins of Chemoselectivity - The Role of Negative 
       Catalysis -- 4.7 Conclusions -- References -- Chapter 5 
       Theoretical Spectroscopies of Iron-Containing Enzymes and 
       Biomimetics -- 5.1 Introduction -- 5.2 Mössbauer 
       Spectroscopy -- 5.2.1 Theoretical Prediction of Mössbauer 
       Parameters -- 5.2.2 Examples from the Literature -- 5.3 
       Nuclear Resonance Vibrational Spectroscopy -- 5.3.1 
       Examples from the Literature -- 5.4 Electron Paramagnetic 
       Resonance -- 5.4.1 Theoretical EPR Spectroscopy -- 5.4.2 
       Examples from the Literature -- 5.5 Absorption 
       Spectroscopy -- 5.5.1 Theoretical Prediction of Absorption
       Spectroscopy -- 5.5.2 Examples from the Literature -- 5.6 
       X-Ray Spectroscopy -- 5.6.1 Theoretical Prediction of 
       Metal and Ligand K-Edge Spectra -- 5.6.2 Examples from the
       Literature -- 5.7 Conclusion -- References -- Chapter 6 
       Bioinspired Non-heme Iron Catalysts in C-H and C=C 
       Oxidation Reactions -- 6.1 Biological Precedents -- 6.1.1 
       Oxidative Iron Proteins -- 6.1.2 Cytochrome P450 -- 6.1.3 
       Rieske Dioxygenases 
505 8  6.2 Non-heme Iron Complexes as Bioinspired Catalysts -- 
       6.2.1 Oxidation of Alkanes (C-H Bonds) by Non-heme Iron 
       Complexes -- 6.2.2 Oxidation of Alkenes (C=C Double Bonds)
       by Non-heme Iron Complexes -- 6.3 Reaction Mechanisms in 
       Catalytic C-H and C=C Oxidation Reactions Mediated by 
       Complexes with N-Rich Ligands -- 6.3.1 The Initially 
       Formed FeIII-OOH and its Cleavage Products -- 6.3.2 Olefin
       Oxidations: Epoxidation and cis-Dihydroxylation -- 6.3.3 
       Alkane Oxidations -- 6.4 Conclusions -- References -- 
       Chapter 7 Application of Magnetic Circular Dichroism, X-
       Ray Absorption Spectroscopy and Extended X-Ray Absorption 
       Fine Structure in Determining Geometric and Electronic 
       Structure of Non-heme Iron(IV)-oxo Enzymatic Intermediates
       and Related Synthetic Models -- 7.1 Introduction -- 7.1.1 
       Magnetic Circular Dichroism (MCD) -- 7.1.2 X-Ray 
       Absorption Spectroscopy and Extended X-Ray Absorption Fine
       Structure -- 7.2 MCD of Iron(IV)-oxo Complexes -- 7.2.1 
       [FeIV=O(TMC)(NCCH3)]2+ -- 7.2.2 Iron(IV)-oxo MCD: Varying 
       Axial and Equatorial Ligands -- 7.2.3 Vibronic Progression
       in MCD -- 7.3 XAS and EXAFS of Iron(IV)-oxo Intermediates 
       and Synthetic Model Complexes -- 7.3.1 Enzymatic Catalytic
       Cycle Intermediates -- 7.3.2 Model Complexes -- 7.4 
       Parting Thoughts -- References -- Chapter 8 Structure, 
       Mechanism and Function of Cytochrome P450 Enzymes -- 8.1 
       Introduction -- 8.2 Cytochromes P450 - A Brief History -- 
       8.3 Optical and Spectroscopic Features -- 8.4 Cytochrome 
       P450 Catalytic Cycle -- 8.5 Biological Diversity -- 8.6 
       Cytochrome P450 Redox Partner Systems -- 8.7 Cytochrome 
       P450 Structure -- 8.8 Physiological Roles of Cytochromes 
       P450 -- 8.9 Cytochrome P450 Medicine and Biotechnology -- 
       8.10 Conclusions and Future Prospects -- References -- 
       Chapter 9 Drug Metabolism by Cytochrome P450: A Tale of 
       Multistate Reactivity -- 9.1 Introduction 
505 8  9.2 Nomenclature of Cytochrome P450 Enzymes -- 9.3 Types 
       of Drug Interactions -- 9.3.1 Induction -- 9.3.2 
       Inhibition -- 9.4 Important Isoforms of Human CYP -- 9.4.1
       CYP1A2 Isoform -- 9.4.2 CYP2C8, CYP2C9 and CYP2C19 
       Isoforms -- 9.4.3 CYP2D6 Isoform -- 9.4.4 CYP3A4 Isoform -
       - 9.5 Examples of Generation of Various Metabolites from a
       Single CYP 450 -- 9.6 CYP 450 Structure -- 9.7 Catalytic 
       Cycle of CYP 450 -- 9.8 Compound I of CYP 450: The Active 
       Species -- 9.8.1 Axial Ligand Effect of Compound I -- 9.9 
       Reactivity of Compound I -- 9.10 Aliphatic C-H 
       Hydroxylation by Compound I of CYP 450 -- 9.10.1 
       Rearrangement Mechanisms of Aliphatic Hydroxylation 
       Reactions -- 9.11 C=C Epoxidation by Compound I of CYP 450
       -- 9.12 Sulfoxidation Reaction by Compound I of CYP 450 --
       9.13 Aromatic Hydroxylation Reaction by Compound I of CYP 
       450 -- 9.14 Role of Water Molecule as Biocatalyst -- 9.15 
       Conclusion -- Acknowledgements -- References -- Chapter 10
       Oxidation of Unnatural Substrates by Engineered Cytochrome
       P450cam -- 10.1 Introduction -- 10.2 Binding of the 
       Substrate -- 10.3 CYP 450cam Reaction Cycle -- 10.4 
       Rational Design of the Active Site of CYP 450cam -- 10.5 
       Metabolism of Unnatural Substrates by CYP 450cam Variants 
       -- 10.6 Binding of Unnatural Substrate, Hydroxylation, and
       Product Release -- 10.6.1 Small Hydrocarbons -- 10.6.2 
       Alkyl Benzenes -- 10.6.3 Polycyclic Aromatic Hydrocarbons 
       (PAHs) -- 10.6.4 2-Ethylhexanol -- 10.6.5 Aromatic-
       Aliphatic Hydrocarbon, Phenylcyclohexane -- 10.6.6 
       Diphenylmethane -- 10.6.7 Valporic Acid -- 10.6.8 
       Terpenoids -- 10.6.9 Fused Benzene-Cycloalkane Compounds -
       - 10.6.10 Nitrogenous Compounds -- 10.6.11 Halogenated 
       Compounds -- 10.7 Summary -- References -- Chapter 11 QM/
       MM Studies of Cytochrome P450 Systems: Application to Drug
       Metabolism -- 11.1 Introduction -- 11.2 CYPs and Drug 
       Metabolism 
505 8  11.3 Quantum Mechanical/Molecular Mechanical (QM/MM) 
       Methods -- 11.4 QM/MM Studies of CYPs -- 11.4.1 Catalytic 
       Cycle of CYP101 (CYP 450cam) -- 11.4.2 Hydroxylation of 
       Camphor by CYP 450cam -- 11.4.3 Compound I Reactivity and 
       Selectivity -- 11.4.4 Aromatic Hydroxylation -- 11.4.5 
       Other QM/MM Studies of CYPs -- 11.5 Conclusions -- 
       References -- Chapter 12 Mechanism and Function of 
       Tryptophan and Indoleamine Dioxygenases -- 12.1 
       Introduction -- 12.2 Biological and Physiological Function
       of Indoleamine Dioxygenase and Tryptophan Dioxygenase -- 
       12.3 Structures of TDO and IDO -- 12.3.1 Comparison of 
       Overall Structure -- 12.3.2 Active Site Environments -- 
       12.4 Turnover and Inhibition -- 12.4.1 Steady State 
       Kinetics -- 12.4.2 Inhibition of TDO and IDO -- 12.5 
       Catalytic Cycle -- 12.5.1 Formation of the Active Ternary 
       Complex -- 12.5.2 Electrochemical Control of Substrate 
       Reactivity -- 12.5.3 Heme Coordination Environment -- 
       12.5.4 Mechanism of Oxygen Insertion -- 12.6 Summary and 
       Conclusions -- References -- Subject Index 
520    This book explains the mechanism and function of 
       mononuclear iron containing enzymes. These important 
       bioprocess intermediates have great industrial potential 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Hydroxylation.;Catalysts.;Enzymes 
655  4 Electronic books 
700 1  Munro, Andrew W 
700 1  Sen, Saptaswa 
700 1  Mowat, Chris 
700 1  Nam, Wonwoo 
700 1  Derat, Etienne 
700 1  Bugg, Tim 
700 1  Proshlyakov, Denis A 
700 1  Hausinger, Robert P 
700 1  Straganz, Grit D 
776 08 |iPrint version:|aShaik, Sason|tIron-Containing Enzymes : 
       Versatile Catalysts of Hydroxylation Reactions in Nature
       |dCambridge : Royal Society of Chemistry,c2011
       |z9781849731812 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1185662|zClick to View