Record 6 of 24
Record:   Prev Next
Author Bezada, Maximiliano J
Title Crustal and upper mantle investigations of the Caribbean-South American plate boundary
book jacket
Descript 137 p
Note Source: Dissertation Abstracts International, Volume: 71-10, Section: B, page: 6005
Adviser: Alan Levander
Thesis (Ph.D.)--Rice University, 2010
The evolution of the Caribbean --- South America plate boundary has been a matter of vigorous debate for decades and many questions remain unresolved. In this work, and in the framework of the BOLIVAR project, we shed light on some aspects of the present state and the tectonic history of the margin by using different types of geophysical data sets and techniques. An analysis of controlled-source traveltime data collected along a boundary-normal profile at ∼65°W was used to build a 2D P-wave velocity model. The model shows that the Caribbean Large Igenous Province is present offshore eastern Venezuela and confirms the uniformity of the velocity structure along the Leeward Antilles volcanic belt. In contrast with neighboring profiles, at this longitude we see no change in velocity structure or crustal thickness across the San Sebastian - El Pilar fault system. A 2D gravity modeling methodology that uses seismically derived initial density models was developed as part of this research. The application of this new method to four of the BOLIVAR boundary-normal profiles suggests that the uppermost mantle is denser under the South American continental crust and the island arc terranes than under the Caribbean oceanic crust. Crustal rocks of the island arc and extended island arc terranes of the Leeward Antilles have a relatively low density, given their P-wave velocity. This may be caused by low iron content, relative to average magmatic arc rocks. Finally, an analysis of teleseismic traveltimes with frequency-dependent kernels produced a 3D P-wave velocity perturbation model. The model shows the structure of the mantle lithosphere under the study area and clearly images the subduction of the Atlantic slab and associated partial removal of the lower lithosphere under northern South America. We also image the subduction of a section of the Caribbean plate under South America with an east-southeast direction. Both the Atlantic and Caribbean subducting slabs penetrate the mantle transition zone, affecting the topography of the 410-km and 660-km discontinuities
School code: 0187
Host Item Dissertation Abstracts International 71-10B
Subject Geophysics
Plate Tectonics
0373
0592
Alt Author Rice University
Record 6 of 24
Record:   Prev Next