LEADER 00000cam  2200361 a 4500 
001    15507916 
003    RPAM 
005    20150223195948.0 
006    aa     b    001 0  
007    cr/||||||||||| 
008    150223r20092000riua    ob    001 0 eng   
020    9781470411657 (online) 
040    DLC|cDLC|dBTCTA|dYDXCP|dC#P|dBWX|dDLC|dRPAM 
050 00 QA221|b.C44 2009 
082 00 511/.4|222 
100 1  Cheney, E. W.|q(Elliott Ward),|d1929- 
245 12 A course in approximation theory /|h[electronic resource] 
       |cWard Cheney, Will Light 
260    Providence, R.I. :|bAmerican Mathematical Society,
       |c[2009?] 
300    1 online resource (xiv, 359 p. : ill.) 
490 1  Graduate Studies in Mathematics, |x1065-7339 (print); |vv.
       101 
500    Originally published: Pacific Grove : Brooks/Cole Pub. Co.,
       c2000 
504    Includes bibliographical references (p. 327-354) and 
       indexes 
505 00 |tChapter 1. Introductory discussion of interpolation
       |tChapter 2. Linear interpolation operators|tChapter 3. 
       Optimization of the Lagrange operator|tChapter 4. 
       Multivariate polynomials|tChapter 5. Moving the nodes
       |tChapter 6. Projections|tChapter 7. Tensor-product 
       interpolation|tChapter 8. The Boolean algebra of 
       projections|tChapter 9. The Newton paradigm for 
       interpolation|tChapter 10. The Lagrange paradigm for 
       interpolation|tChapter 11. Interpolation by translates of 
       a single function|tChapter 12. Positive definite functions
       |tChapter 13. Strictly positive definite functions
       |tChapter 14. Completely monotone functions|tChapter 15. 
       The Schoenberg interpolation theorem|tChapter 16. The 
       Micchelli interpolation theorem|tChapter 17. Positive 
       definite functions on spheres|tChapter 18. Approximation 
       by positive definite functions|tChapter 19. Approximation 
       reconstruction of functions and tomography|tChapter 20. 
       Approximation by convolution|tChapter 21. The good kernels
       |tChapter 22. Ridge functions|tChapter 23. Ridge function 
       approximation via convolutions|tChapter 24. Density of 
       ridge functions|tChapter 25. Artificial neural networks
       |tChapter 26. Chebyshev centers|tChapter 27. Optimal 
       reconstruction of functions|tChapter 28. Algorithmic 
       orthogonal projections|tChapter 29. Cardinal B-splines and
       the sinc function|tChapter 30. The Golomb-Weinberger 
       theory|tChapter 31. Hilbert function spaces and 
       reproducing kernels|tChapter 32. Spherical thin-plate 
       splines|tChapter 33. Box splines|tChapter 34. Wavelets, I
       |tChapter 35. Wavelets II|tChapter 36. Quasi-interpolation
506 1  Access is restricted to licensed institutions 
533    Electronic reproduction.|bProvidence, Rhode Island :
       |cAmerican Mathematical Society.|d2012 
538    Mode of access : World Wide Web 
588    Description based on print version record 
650  0 Approximation theory|vTextbooks 
700 1  Light, W. A.|q(William Allan),|d1950- 
776 0  |iPrint version: |aCheney, E. W. 1929-|tcourse in 
       approximation theory /|w(DLC)   2008047417|x1065-7339
       |z9780821847985 
830  0 Graduate studies in mathematics ;|vv. 101 
856 4  |3Contents|uhttp://www.ams.org/gsm/101 
856 4  |3Contents|uhttp://dx.doi.org/10.1090/gsm/101