Record:   Prev Next
Author Li, Shaofan
Title Multiscale Simulations and Mechanics of Biological Materials
Imprint New York : John Wiley & Sons, Incorporated, 2013
©2013
book jacket
Edition 1st ed
Descript 1 online resource (475 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- Contents -- About the Editors -- List of Contributors -- Preface -- Part I MULTISCALE SIMULATION THEORY -- 1 Atomistic-to-Continuum Coupling Methods for Heat Transfer in Solids -- 1.1 Introduction -- 1.2 The Coupled Temperature Field -- 1.2.1 Spatial Reduction -- 1.2.2 Time Averaging -- 1.3 Coupling the MD and Continuum Energy -- 1.3.1 The Coupled System -- 1.3.2 Continuum Heat Transfer -- 1.3.3 Augmented MD -- 1.4 Examples -- 1.4.1 One-Dimensional Heat Conduction -- 1.4.2 Thermal Response of a Composite System -- 1.5 Coupled Phonon-Electron Heat Transport -- 1.6 Examples: Phonon-Electron Coupling -- 1.6.1 Equilibration of Electron/Phonon Energies -- 1.6.2 Laser Heating of a Carbon Nanotube -- 1.7 Discussion -- Acknowledgments -- References -- 2 Accurate Boundary Treatments for Concurrent Multiscale Simulations -- 2.1 Introduction -- 2.2 Time History Kernel Treatment -- 2.2.1 Harmonic Chain -- 2.2.2 Square Lattice -- 2.3 Velocity Interfacial Conditions: Matching the Differential Operator -- 2.4 MBCs: Matching the Dispersion Relation -- 2.4.1 Harmonic Chain -- 2.4.2 FCC Lattice -- 2.5 Accurate Boundary Conditions: Matching the Time History Kernel Function -- 2.6 Two-Way Boundary Conditions -- 2.7 Conclusions -- Acknowledgments -- References -- 3 A Multiscale Crystal Defect Dynamics and Its Applications -- 3.1 Introduction -- 3.2 Multiscale Crystal Defect Dynamics -- 3.3 How and Why the MCDD Model Works -- 3.4 Multiscale Finite Element Discretization -- 3.5 Numerical Examples -- 3.6 Discussion -- Acknowledgments -- Appendix -- References -- 4 Application of Many-Realization Molecular Dynamics Method to Understand the Physics of Nonequilibrium Processes in Solids -- 4.1 Chapter Overview and Background -- 4.2 Many-Realization Method -- 4.3 Application of the Many-Realization Method to Shock Analysis -- 4.4 Conclusions -- Acknowledgments
References -- 5 Multiscale, Multiphysics Modeling of Electromechanical Coupling in Surface-Dominated Nanostructures -- 5.1 Introduction -- 5.2 Atomistic Electromechanical Potential Energy -- 5.2.1 Atomistic Electrostatic Potential Energy: Gaussian Dipole Method -- 5.2.2 Finite Element Equilibrium Equations from Total Electromechanical Potential Energy -- 5.3 Bulk Electrostatic Piola-Kirchoff Stress -- 5.3.1 Cauchy-Born Kinematics -- 5.3.2 Comparison of Bulk Electrostatic Stress with Molecular Dynamics Electrostatic Force -- 5.4 Surface Electrostatic Stress -- 5.5 One-Dimensional Numerical Examples -- 5.5.1 Verification of Bulk Electrostatic Stress -- 5.5.2 Verification of Surface Electrostatic Stress -- 5.6 Conclusions and Future Research -- Acknowledgments -- References -- 6 Towards a General Purpose Design System for Composites -- 6.1 Motivation -- 6.2 General Purpose Multiscale Formulation -- 6.2.1 The Basic Reduced-Order Model -- 6.2.2 Enhanced Reduced-Order Model -- 6.3 Mechanistic Modeling of Fatigue via Multiple Temporal Scales -- 6.4 Coupling of Mechanical and Environmental Degradation Processes -- 6.4.1 Mathematical Model -- 6.4.2 Mathematical Upscaling -- 6.4.3 Computational Upscaling -- 6.5 Uncertainty Quantification of Nonlinear Model of Micro-Interfaces and Micro-Phases -- References -- Part II PATIENT-SPECIFIC FLUID-STRUCTURE INTERACTION MODELING, SIMULATION AND DIAGNOSIS -- 7 Patient-Specific Computational Fluid Mechanics of Cerebral Arteries with Aneurysm and Stent -- 7.1 Introduction -- 7.2 Mesh Generation -- 7.3 Computational Results -- 7.3.1 Computational Models -- 7.3.2 Comparative Study -- 7.3.3 Evaluation of Zero-Thickness Representation -- 7.4 Concluding Remarks -- Acknowledgments -- References -- 8 Application of Isogeometric Analysis to Simulate Local Nanoparticulate Drug Delivery in Patient-Specific Coronary Arteries
8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Mathematical Modeling -- 8.2.2 Parameter Selection -- 8.2.3 Mesh Generation from Medical Imaging Data -- 8.3 Results -- 8.3.1 Extraction of NP Wall Deposition Data -- 8.3.2 Drug Distribution in a Normal Artery Wall -- 8.3.3 Drug Distribution in a Diseased Artery Wall with a Vulnerable Plaque -- 8.4 Conclusions and Future Work -- Acknowledgments -- References -- 9 Modeling and Rapid Simulation of High-Frequency Scattering Responses of Cellular Groups -- 9.1 Introduction -- 9.2 Ray Theory: Scope of Use and General Remarks -- 9.3 Ray Theory -- 9.4 Plane Harmonic Electromagnetic Waves -- 9.4.1 General Plane Waves -- 9.4.2 Electromagnetic Waves -- 9.4.3 Optical Energy Propagation -- 9.4.4 Reflection and Absorption of Energy -- 9.4.5 Computational Algorithm -- 9.4.6 Thermal Conversion of Optical Losses -- 9.5 Summary -- References -- 10 Electrohydrodynamic Assembly of Nanoparticles for Nanoengineered Biosensors -- 10.1 Introduction for Nanoengineered Biosensors -- 10.2 Electric-Field-Induced Phenomena -- 10.2.1 Electrophoresis -- 10.2.2 Dielectrophoresis -- 10.2.3 Electroosmotic and Electrothermal Flow -- 10.2.4 Brownian Motion Forces and Drag Forces -- 10.3 Geometry Dependency of Dielectrophoresis -- 10.4 Electric-Field-Guided Assembly of Flexible Molecules in Combination with other Mechanisms -- 10.4.1 Dielectrophoresis in Combination with Fluid Flow -- 10.4.2 Dielectrophoresis in Combination with Binding Affinity -- 10.4.3 Dielectrophoresis in Combination with Capillary Action and Viscosity -- 10.5 Selective Assembly of Nanoparticles -- 10.5.1 Size-Selective Deposition of Nanoparticles -- 10.5.2 Electric-Property Sorting of Nanoparticles -- 10.6 Summary and Applications -- References -- 11 Advancements in the Immersed Finite-Element Method and Bio-Medical Applications -- 11.1 Introduction
11.2 Formulation -- 11.2.1 The Immersed Finite Element Method -- 11.2.2 Semi-Implicit Immersed Finite Element Method -- 11.3 Bio-Medical Applications -- 11.3.1 Red Blood Cell in Bifurcated Vessels -- 11.3.2 Human Vocal Folds Vibration during Phonation -- 11.4 Conclusions -- References -- 12 Immersed Methods for Compressible Fluid-Solid Interactions -- 12.1 Background and Objectives -- 12.2 Results and Challenges -- 12.2.1 Formulations, Theories, and Results -- 12.2.2 Stability Analysis -- 12.2.3 Kernel Functions -- 12.2.4 A Simple Model Problem -- 12.2.5 Compressible Fluid Model for General Grids -- 12.2.6 Multigrid Preconditioner -- 12.3 Conclusion -- References -- Part III FROM CELLULAR STRUCTURE TO TISSUES AND ORGANS -- 13 The Role of the Cortical Membrane in Cell Mechanics: Model and Simulation -- 13.1 Introduction -- 13.2 The Physics of the Membrane-Cortex Complex and Its Interactions -- 13.2.1 The Mechanics of the Membrane-Cortex Complex -- 13.2.2 Interaction of the Membrane with the Outer Environment -- 13.3 Formulation of the Membrane Mechanics and Fluid-Membrane Interaction -- 13.3.1 Kinematics of Immersed Membrane -- 13.3.2 Variational Formulation of the Immersed MCC Problem -- 13.3.3 Principle of Virtual Power and Conservation of Momentum -- 13.4 The Extended Finite Element and the Grid-Based Particle Methods -- 13.5 Examples -- 13.5.1 The Equilibrium Shapes of the Red Blood Cell -- 13.5.2 Cell Endocytosis -- 13.5.3 Cell Blebbing -- 13.6 Conclusion -- Acknowledgments -- References -- 14 Role of Elastin in Arterial Mechanics -- 14.1 Introduction -- 14.2 The Role of Elastin in Vascular Diseases -- 14.3 Mechanical Behavior of Elastin -- 14.3.1 Orthotropic Hyperelasticity in Arterial Elastin -- 14.3.2 Viscoelastic Behavior -- 14.4 Constitutive Modeling of Elastin -- 14.5 Conclusions -- Acknowledgments -- References
15 Characterization of Mechanical Properties of Biological Tissue: Application to the FEM Analysis of the Urinary Bladder -- 15.1 Introduction -- 15.2 Inverse Approach for the Material Characterization of Biological Soft Tissues via a Generalized Rule of Mixtures -- 15.2.1 Constitutive Model for Material Characterization -- 15.2.2 Definition of the Objective Function and Materials Characterization Procedure -- 15.2.3 Validation of the Inverse Model for Urinary Bladder Tissue Characterization -- 15.3 FEM Analysis of the Urinary Bladder -- 15.3.1 Constitutive Model for Tissue Analysis -- 15.3.2 Validation. Test Inflation of a Quasi-incompressible Rubber Sphere -- 15.3.3 Mechanical Simulation of Human Urinary Bladder -- 15.3.4 Study of Urine-Bladder Interaction -- 15.4 Conclusions -- Acknowledgments -- References -- 16 Structure Design of Vascular Stents -- 16.1 Introduction -- 16.2 Ideal Vascular Stents -- 16.3 Design Parameters that Affect the Properties of Stents -- 16.3.1 Expansion Method -- 16.3.2 Stent Materials -- 16.3.3 Structure of Stents -- 16.3.4 Effect of Design Parameters on Stent Properties -- 16.4 Main Methods for Vascular Stent Design -- 16.5 Vascular Stent Design Method Perspective -- References -- 17 Applications of Meshfree Methods in Explicit Fracture and Medical Modeling -- 17.1 Introduction -- 17.2 Explicit Crack Representation -- 17.2.1 Two-Dimensional Cracks -- 17.2.2 Three-Dimensional Cracks in Thin Shells -- 17.2.3 Material Model Requirements -- 17.2.4 Crack Examples -- 17.3 Meshfree Modeling in Medicine -- Acknowledgments -- References -- 18 Design of Dynamic and Fatigue-Strength-Enhanced Orthopedic Implants -- 18.1 Introduction -- 18.2 Fatigue Life Analysis of Orthopedic Implants -- 18.2.1 Fatigue Life Testing for Implants -- 18.2.2 Fatigue Life Prediction -- 18.3 LSP Process -- 18.4 LSP Modeling and Simulation
18.4.1 Pressure Pulse Model
Multiscale Simulations and Mechanics of Biological Materials  A compilation of recent developments in multiscale simulation and computational biomaterials written by leading specialists in the field Presenting the latest developments in multiscale mechanics and multiscale simulations, and offering a unique viewpoint on multiscale modelling of biological materials, this book outlines the latest developments in computational biological materials from atomistic and molecular scale simulation on DNA, proteins, and nano-particles, to meoscale soft matter modelling of cells, and to macroscale soft tissue and blood vessel, and bone simulations. Traditionally, computational biomaterials researchers come from biological chemistry and biomedical engineering, so this is probably the first edited book to present work from these talented computational mechanics researchers.  The book has been written to honor Professor Wing Liu of Northwestern University, USA, who has made pioneering contributions in multiscale simulation and computational biomaterial in specific simulation of drag delivery at atomistic and molecular scale and computational cardiovascular fluid mechanics via immersed finite element method. Key features: Offers a unique interdisciplinary approach to multiscale biomaterial modelling aimed at both accessible introductory and advanced levels Presents a breadth of computational approaches for modelling biological materials across multiple length scales (molecular to whole-tissue scale), including solid and fluid based approaches  A companion website for supplementary materials plus links to contributors' websites (www.wiley.com/go/li/multiscale)
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Li, Shaofan Multiscale Simulations and Mechanics of Biological Materials New York : John Wiley & Sons, Incorporated,c2013 9781118350799
Subject Biomechanics.;Multiscale modeling
Electronic books
Alt Author Qian, Dong
Record:   Prev Next