Descript |
1 online resource (435 pages) |
|
text txt rdacontent |
|
computer c rdamedia |
|
online resource cr rdacarrier |
Series |
World Scientific Studies In International Economics ; v.4 |
|
World Scientific Studies In International Economics
|
Note |
Intro -- Contents -- Foreword -- Preface -- 1. Onsager's Variational Principle in Soft Matter Dynamics M. Doi -- 1. Introduction -- 2. Particle Motion in Viscous Fluid -- 2.1. Stokesian hydrodynamics -- 2.2. Hydrodynamic reciprocal relation -- 2.3. Hydrodynamic variational principle -- 3. Onsager's Variational Principle -- 3.1. Onsager's kinetic equation -- 3.2. Validity of the variational principle -- 3.3. Merit of the variational principle -- 3.4. Reciprocal relation in the kinetic equation -- 3.5. Forces needed to controll the state variables -- 4. Brownian Motion -- 4.1. Diffusion equation -- 4.2. Reciprocal relation in the diffusion equation -- 4.3. Forces acting on the semi-permeable membrane -- 5. Rotational Brownian Motion -- 5.1. State variables of a rod-like particle -- 5.2. Diffusion equation for ( , ) -- 5.3. Diffusion equation for (u) -- 5.4. Diffusion equation in flow field -- 5.5. Expression for the stress tensor -- 6. Coupling between Diffusion and Flow -- 6.1. Diffusion in concentrated solutions -- 6.2. Coupling between solute diffusion and solution flow -- 6.3. Phase separation -- 7. Gel Dynamics -- 8. Liquid Crystals -- 9. Conclusion -- Acknowledgments -- Appendix A. Proof of the Hydrodynamic Reciprocal Relation -- References -- 2. Rheo-Dielectric Behavior of Soft Matters H. Watanabe, Y. Matsumiya, K. Horio, Y. Masubuchi and T. Uneyama -- 1. Introduction -- 2. Basics of Dielectric Relaxation -- 2.1. Instrumentation -- 2.2. Phenomenological framework -- 2.3. Molecular expression of (t) -- 3. Rheo-Dielectric Behavior of Polymers -- 3.1. Glassy relaxation and rubbery relaxation -- 3.2. Rheo-dielectric behavior of entangled chain -- 3.2.1. Overview -- 3.2.2. Flow-induced equilibration of entanglement segments -- 3.2.3. Mutual equilibration number of entanglement segments |
|
3.2.4. Lack of flow-induced dielectric acceleration for linear chain -- 4. Rheo-Dielectric Behavior of Liquid Crystalline Materials -- 4.1. Rheo-dielectric behavior of nematic 7CB -- 4.2. Rheo-dielectric behavior of smectic 8CB -- 5. Rheo-Dielectric Behavior of Salt/PEO Composite Systems -- 5.1. Overview of rheo-dielectric behavior of LiClO4/PEO System -- 5.2. Flow-induced enhancement of Li+ mobility -- 6. Rheo-Dielectric Behavior of Carbon Black Suspensions -- 7. Concluding Remarks -- Acknowledgment -- Appendix A. Rheo-Dielectric Telaxation Function of Type A Chain -- A.1. General -- A.2. Analysis under steady shear -- A.3. Analysis under LAOS -- Appendix B. Macdonald Theory for Electrode Polarization -- References -- 3. Morphology and Rheology of Immiscible Polymer Blends in Electric and Shear Flow Fields H. Orihara -- 1. Introduction -- 2. Experimental System for Observing Three-Dimensional Structures -- 3. Droplet Coalescence Process Under Electric Fields -- 3.1. 3D observation of coalescence process -- 3.2. Scaling property and hierarchical model -- 4. Shear Modulus of Columnar Structure Formed in an Im- miscible Polymer Blend Under Electric Fields -- 4.1. 3D observation of columnar structure and shear modulus -- 4.2. Theoretical derivation of static shear modulus -- 5. Transient Response of an Immiscible Polymer Blend to a Step Electric Field Under Shear Flow -- 5.1. 3D observation of transient process and stress measurement -- 6. Scaling Properties When Subjected to a Step Electric Field under shear flow -- 6.1. Derivation of scaling properties in electric and shear flow fields -- 6.2. Experimental tests -- 7. Summary -- References -- 4. Dynamical Aspects of Two-Dimensional Soft Matter F. Sagués, J. Claret and J. Ignés-Mullol -- 1. Introduction -- 2. Photoalignment and Rotation -- 2.1. Patterns of photoalignment: Experiments |
|
2.2. Patterns of photoalignment: Model and numerical results -- 2.3. Collective precession under rotating polarized illumination -- 3. Defect Dynamics in Two-Dimensional Soft Matter -- 3.1. Formation of defects during domain coalescence -- 3.2. Defect-mediated formation of chiral domains -- 3.3. Quantitative analysis of defect dynamics -- 4. Mechanical Chiral Selection -- 5. Two-Dimensional Microfluidics -- 5.1. Dynamics of a two-dimensional fluid flowing trough a microchannel. The bottleneck effect -- 5.2. Monolayers flowing trough different microchannels. Two-dimensional microfluidics -- References -- 5. Hydrodynamic Effects in Multicomponent Fluid Membranes S. Komura, S. Ramachandran and M. Imai -- 1. Introduction -- 2. Membrane Hydrodynamics -- 3. Dynamics of Concentration Fluctuations -- 3.1. Concentration fluctuations in membranes -- 3.2. Time-dependent Ginzburg-Landau model -- 3.3. Effective diffusion coefficient -- 3.4. Membrane as a 2D microemulsion -- 3.5. Biological relevance -- 4. Phase Separation Dynamics -- 4.1. Macroscopic phase separation in membranes -- 4.2. Model and simulation technique -- 4.3. Domain growth dynamics -- 4.4. Correlated diffusion -- 5. Diffusion Coefficient of a 2D Liquid Domain -- 5.1. Diffusion of liquid domains -- 5.2. Hydrodynamic model with momentum decay -- 5.3. Drag cofficient of a liquid domain -- 5.4. Comparison with experiments -- 6. Dynamics of a Polymer Chain Confined in Membranes -- 6.1. Diffusion of 2D polymers -- 6.2. Dynamics of a 2D Gaussian polymer chain -- 6.3. Polymer dynamics: free membrane case -- 6.4. Polymer dynamics: confined membrane case -- 6.5. Excluded volume effects -- 6.6. Related works -- 7. Hydrodynamic Coupling Between Two Fluid Membranes -- 8. Conclusions -- Acknowledgments -- Appendix A. Derivation of the General Mobility Tensor -- Appendix B. Mobility Tensors in Real Space |
|
B.1. Free membrane case -- B.2. Confined membrane case -- References -- 6. Actively Twisted Polymers and Filaments in Biology H. Wada and R. R. Netz -- 1. Introduction -- 1.1. Physical properties of semiflexible polymers -- 1.2. Twist dynamics in biology: Transcription driven instability in DNA -- 1.3. Aims and organization of this chapter -- 2. Viscous Relaxations of Stretch, Bend, and Twist in Elastic Rods -- 3. Thin Rod Kinematics -- 4. Thin Rod Mechanics -- 4.1. Variational relations -- 4.2. Calculation of the forces and moments -- 5. Equations of Motion for Rods with Bend and Twist: Rouse Dynamics -- 5.1. Kirchhoff rod equation -- 5.2. Topological aspects in closed curves -- 5.3. Intuitive understanding of twist -- 5.4. Link flow conservation for open curves -- 6. Numerical Method: Brownian Dynamics for Twist- Storing Polymers -- 7. Equilibrium Twist Diffusion in Semiflexible Polymers -- 8. Twisted Elastic Rods and Buckling Instabiliy -- 8.1. Twisted elastic rod without stretching -- 8.2. Twisted elastic rod under stretching -- 9. Rotationally Driven Stiff Filaments: The Twirling- Whirling Instability -- 9.1. Nonlinear whirling dynamics -- 9.2. Influence of thermal fluctuations on the dynamical transition -- 9.3. Energetic aspects of writhing dynamics -- 9.4. Geometric and topological aspects of writhing dynamics -- 10. Rotationally Driven Semiflexible Polymers: Plectoneme Transitions -- 10.1. Three dissipation channels and scaling arguments -- 10.2. Plectoneme creation channel -- 10.3. Minimal dissipation hypothesis -- 10.3.1. Translation mode dominated case: = 0 -- 10.3.2. Stretching mode dominated case: = 1 -- 10.4. Experimental relevances -- 11. Effects of Bending Kinks on Torsional Transport in DNA -- 11.1. Nelson's hybrid rotation model -- 11.2. Experimental tests -- 12. Impact of Torsional Stress on Nucleosome Dynamics |
|
12.1. Model nucleosome: semiflexible polymer-sphere com- plex -- 12.2. Wrapping transition driven by an isotropic attractive potential -- 12.3. Twist propagation into the complex: Enhanced rota- tional friction -- 13. Conclusion -- Acknowledgments -- Appendix A -- Appendix B -- Appendix C -- References -- 7. Dynamics of Deformable Self-Propelled Particles: Relations with Cell Migration M. Sano, M. Y. Matsuo and T. Ohta -- 1. Introduction -- 2. Deformable Particle in Two Dimensions -- 3. Particle Dynamics in an Excitable Reaction Diffusion System -- 3.1. Excitable reaction-diffusion equations -- 3.2. Interface equation of motion -- 3.3. Equation of motion for the center of mass (t) -- 3.4. Equations of motion for S and U -- 4. Dynamics of a Single Particle in Two Dimensions -- 4.1. Numerical simulations I -- 4.2. Numerical simulations II -- 4.3. Coupled set of equations for the Fourier amplitudes -- 5. Dynamics in Three Dimensions -- 6. Problems of Cell Migration -- 6.1. Experimental analysis of shape dynamics and migration -- 6.2. Experimental analysis of stress field -- 7. Cell Migration Models -- 7.1. Force balance on leading edge -- 7.2. Geometry and dynamics of leading edge -- 7.3. Complex active motion of leading edge -- 8. Summary and Discussion -- Acknowledgement -- References -- Index |
|
Key Features:Non-equilibrium Soft Matter Physics is a rapidly growing new research fieldAll the contributors are the top researchers in this fieldThe book also highlights the strong areas of research in Japan |
|
Description based on publisher supplied metadata and other sources |
|
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries |
Link |
Print version: Komura, Shigeyuki Non-Equilibrium Soft Matter Physics
Singapore : World Scientific Publishing Co Pte Ltd,c2012 9789814360623
|
Subject |
Condensed matter.;Equilibrium
|
|
Electronic books
|
Alt Author |
Ohta, Takao
|
|