Record:   Prev Next
Author Komura, Shigeyuki
Title Non-Equilibrium Soft Matter Physics
Imprint Singapore : World Scientific Publishing Co Pte Ltd, 2012
©2012
book jacket
Descript 1 online resource (435 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series World Scientific Studies In International Economics ; v.4
World Scientific Studies In International Economics
Note Intro -- Contents -- Foreword -- Preface -- 1. Onsager's Variational Principle in Soft Matter Dynamics M. Doi -- 1. Introduction -- 2. Particle Motion in Viscous Fluid -- 2.1. Stokesian hydrodynamics -- 2.2. Hydrodynamic reciprocal relation -- 2.3. Hydrodynamic variational principle -- 3. Onsager's Variational Principle -- 3.1. Onsager's kinetic equation -- 3.2. Validity of the variational principle -- 3.3. Merit of the variational principle -- 3.4. Reciprocal relation in the kinetic equation -- 3.5. Forces needed to controll the state variables -- 4. Brownian Motion -- 4.1. Diffusion equation -- 4.2. Reciprocal relation in the diffusion equation -- 4.3. Forces acting on the semi-permeable membrane -- 5. Rotational Brownian Motion -- 5.1. State variables of a rod-like particle -- 5.2. Diffusion equation for ( , ) -- 5.3. Diffusion equation for (u) -- 5.4. Diffusion equation in flow field -- 5.5. Expression for the stress tensor -- 6. Coupling between Diffusion and Flow -- 6.1. Diffusion in concentrated solutions -- 6.2. Coupling between solute diffusion and solution flow -- 6.3. Phase separation -- 7. Gel Dynamics -- 8. Liquid Crystals -- 9. Conclusion -- Acknowledgments -- Appendix A. Proof of the Hydrodynamic Reciprocal Relation -- References -- 2. Rheo-Dielectric Behavior of Soft Matters H. Watanabe, Y. Matsumiya, K. Horio, Y. Masubuchi and T. Uneyama -- 1. Introduction -- 2. Basics of Dielectric Relaxation -- 2.1. Instrumentation -- 2.2. Phenomenological framework -- 2.3. Molecular expression of (t) -- 3. Rheo-Dielectric Behavior of Polymers -- 3.1. Glassy relaxation and rubbery relaxation -- 3.2. Rheo-dielectric behavior of entangled chain -- 3.2.1. Overview -- 3.2.2. Flow-induced equilibration of entanglement segments -- 3.2.3. Mutual equilibration number of entanglement segments
3.2.4. Lack of flow-induced dielectric acceleration for linear chain -- 4. Rheo-Dielectric Behavior of Liquid Crystalline Materials -- 4.1. Rheo-dielectric behavior of nematic 7CB -- 4.2. Rheo-dielectric behavior of smectic 8CB -- 5. Rheo-Dielectric Behavior of Salt/PEO Composite Systems -- 5.1. Overview of rheo-dielectric behavior of LiClO4/PEO System -- 5.2. Flow-induced enhancement of Li+ mobility -- 6. Rheo-Dielectric Behavior of Carbon Black Suspensions -- 7. Concluding Remarks -- Acknowledgment -- Appendix A. Rheo-Dielectric Telaxation Function of Type A Chain -- A.1. General -- A.2. Analysis under steady shear -- A.3. Analysis under LAOS -- Appendix B. Macdonald Theory for Electrode Polarization -- References -- 3. Morphology and Rheology of Immiscible Polymer Blends in Electric and Shear Flow Fields H. Orihara -- 1. Introduction -- 2. Experimental System for Observing Three-Dimensional Structures -- 3. Droplet Coalescence Process Under Electric Fields -- 3.1. 3D observation of coalescence process -- 3.2. Scaling property and hierarchical model -- 4. Shear Modulus of Columnar Structure Formed in an Im- miscible Polymer Blend Under Electric Fields -- 4.1. 3D observation of columnar structure and shear modulus -- 4.2. Theoretical derivation of static shear modulus -- 5. Transient Response of an Immiscible Polymer Blend to a Step Electric Field Under Shear Flow -- 5.1. 3D observation of transient process and stress measurement -- 6. Scaling Properties When Subjected to a Step Electric Field under shear flow -- 6.1. Derivation of scaling properties in electric and shear flow fields -- 6.2. Experimental tests -- 7. Summary -- References -- 4. Dynamical Aspects of Two-Dimensional Soft Matter F. Sagués, J. Claret and J. Ignés-Mullol -- 1. Introduction -- 2. Photoalignment and Rotation -- 2.1. Patterns of photoalignment: Experiments
2.2. Patterns of photoalignment: Model and numerical results -- 2.3. Collective precession under rotating polarized illumination -- 3. Defect Dynamics in Two-Dimensional Soft Matter -- 3.1. Formation of defects during domain coalescence -- 3.2. Defect-mediated formation of chiral domains -- 3.3. Quantitative analysis of defect dynamics -- 4. Mechanical Chiral Selection -- 5. Two-Dimensional Microfluidics -- 5.1. Dynamics of a two-dimensional fluid flowing trough a microchannel. The bottleneck effect -- 5.2. Monolayers flowing trough different microchannels. Two-dimensional microfluidics -- References -- 5. Hydrodynamic Effects in Multicomponent Fluid Membranes S. Komura, S. Ramachandran and M. Imai -- 1. Introduction -- 2. Membrane Hydrodynamics -- 3. Dynamics of Concentration Fluctuations -- 3.1. Concentration fluctuations in membranes -- 3.2. Time-dependent Ginzburg-Landau model -- 3.3. Effective diffusion coefficient -- 3.4. Membrane as a 2D microemulsion -- 3.5. Biological relevance -- 4. Phase Separation Dynamics -- 4.1. Macroscopic phase separation in membranes -- 4.2. Model and simulation technique -- 4.3. Domain growth dynamics -- 4.4. Correlated diffusion -- 5. Diffusion Coefficient of a 2D Liquid Domain -- 5.1. Diffusion of liquid domains -- 5.2. Hydrodynamic model with momentum decay -- 5.3. Drag cofficient of a liquid domain -- 5.4. Comparison with experiments -- 6. Dynamics of a Polymer Chain Confined in Membranes -- 6.1. Diffusion of 2D polymers -- 6.2. Dynamics of a 2D Gaussian polymer chain -- 6.3. Polymer dynamics: free membrane case -- 6.4. Polymer dynamics: confined membrane case -- 6.5. Excluded volume effects -- 6.6. Related works -- 7. Hydrodynamic Coupling Between Two Fluid Membranes -- 8. Conclusions -- Acknowledgments -- Appendix A. Derivation of the General Mobility Tensor -- Appendix B. Mobility Tensors in Real Space
B.1. Free membrane case -- B.2. Confined membrane case -- References -- 6. Actively Twisted Polymers and Filaments in Biology H. Wada and R. R. Netz -- 1. Introduction -- 1.1. Physical properties of semiflexible polymers -- 1.2. Twist dynamics in biology: Transcription driven instability in DNA -- 1.3. Aims and organization of this chapter -- 2. Viscous Relaxations of Stretch, Bend, and Twist in Elastic Rods -- 3. Thin Rod Kinematics -- 4. Thin Rod Mechanics -- 4.1. Variational relations -- 4.2. Calculation of the forces and moments -- 5. Equations of Motion for Rods with Bend and Twist: Rouse Dynamics -- 5.1. Kirchhoff rod equation -- 5.2. Topological aspects in closed curves -- 5.3. Intuitive understanding of twist -- 5.4. Link flow conservation for open curves -- 6. Numerical Method: Brownian Dynamics for Twist- Storing Polymers -- 7. Equilibrium Twist Diffusion in Semiflexible Polymers -- 8. Twisted Elastic Rods and Buckling Instabiliy -- 8.1. Twisted elastic rod without stretching -- 8.2. Twisted elastic rod under stretching -- 9. Rotationally Driven Stiff Filaments: The Twirling- Whirling Instability -- 9.1. Nonlinear whirling dynamics -- 9.2. Influence of thermal fluctuations on the dynamical transition -- 9.3. Energetic aspects of writhing dynamics -- 9.4. Geometric and topological aspects of writhing dynamics -- 10. Rotationally Driven Semiflexible Polymers: Plectoneme Transitions -- 10.1. Three dissipation channels and scaling arguments -- 10.2. Plectoneme creation channel -- 10.3. Minimal dissipation hypothesis -- 10.3.1. Translation mode dominated case: = 0 -- 10.3.2. Stretching mode dominated case: = 1 -- 10.4. Experimental relevances -- 11. Effects of Bending Kinks on Torsional Transport in DNA -- 11.1. Nelson's hybrid rotation model -- 11.2. Experimental tests -- 12. Impact of Torsional Stress on Nucleosome Dynamics
12.1. Model nucleosome: semiflexible polymer-sphere com- plex -- 12.2. Wrapping transition driven by an isotropic attractive potential -- 12.3. Twist propagation into the complex: Enhanced rota- tional friction -- 13. Conclusion -- Acknowledgments -- Appendix A -- Appendix B -- Appendix C -- References -- 7. Dynamics of Deformable Self-Propelled Particles: Relations with Cell Migration M. Sano, M. Y. Matsuo and T. Ohta -- 1. Introduction -- 2. Deformable Particle in Two Dimensions -- 3. Particle Dynamics in an Excitable Reaction Diffusion System -- 3.1. Excitable reaction-diffusion equations -- 3.2. Interface equation of motion -- 3.3. Equation of motion for the center of mass (t) -- 3.4. Equations of motion for S and U -- 4. Dynamics of a Single Particle in Two Dimensions -- 4.1. Numerical simulations I -- 4.2. Numerical simulations II -- 4.3. Coupled set of equations for the Fourier amplitudes -- 5. Dynamics in Three Dimensions -- 6. Problems of Cell Migration -- 6.1. Experimental analysis of shape dynamics and migration -- 6.2. Experimental analysis of stress field -- 7. Cell Migration Models -- 7.1. Force balance on leading edge -- 7.2. Geometry and dynamics of leading edge -- 7.3. Complex active motion of leading edge -- 8. Summary and Discussion -- Acknowledgement -- References -- Index
Key Features:Non-equilibrium Soft Matter Physics is a rapidly growing new research fieldAll the contributors are the top researchers in this fieldThe book also highlights the strong areas of research in Japan
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Komura, Shigeyuki Non-Equilibrium Soft Matter Physics Singapore : World Scientific Publishing Co Pte Ltd,c2012 9789814360623
Subject Condensed matter.;Equilibrium
Electronic books
Alt Author Ohta, Takao
Record:   Prev Next