Record:   Prev Next
Author Ortmann, Frank
Title Topological Insulators : Fundamentals and Perspectives
Imprint Berlin : John Wiley & Sons, Incorporated, 2015
©2015
book jacket
Edition 1st ed
Descript 1 online resource (434 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Foreword -- Part I: Fundamentals -- Chapter 1 Quantum Spin Hall Effect and Topological Insulators -- References -- Chapter 2 Hybridization of Topological Surface States and Emergent States -- 2.1 Introduction -- 2.2 Topological Phases and Surface States -- 2.2.1 Topological Insulators and Z2 Topological Numbers -- 2.2.2 Weyl Semimetals -- 2.2.3 Phase Transition between Topological Insulators and Weyl semimetals -- 2.3 Hybridization of Topological Surface States and Emergent States -- 2.3.1 Chirality of the Surface Dirac Cones -- 2.3.2 Thin Film -- 2.3.3 Interface between Two TIs -- 2.3.4 Superlattice -- 2.4 Summary -- Acknowledgments -- References -- Chapter 3 Topological Insulators in Two Dimensions -- 3.1 Introduction -- 3.2 2D TIs: Inverted HgTe/CdTe and Inverted InAs/GaSb Quantum Wells -- 3.2.1 HgTe/CdTe Quantum Wells -- 3.2.2 The System InAs/GaSb -- 3.3 Magneto-Transport Experiments in HgTe Quantum Wells -- 3.3.1 Sample Fabrication -- 3.3.2 Transition from n- to p-Conductance -- 3.3.3 Magnetic-Field-Induced Phase Transition -- 3.4 The QSH effect in HgTe Quantum Wells -- 3.4.1 Measurements of the Longitudinal Resistance -- 3.4.2 Transport in Helical Edge States -- 3.4.3 Nonlocal Measurements -- 3.4.4 Spin Polarization of the QSH Edge States -- 3.5 QSH Effect in a Magnetic Field -- 3.6 Probing QSH Edge States at a Local Scale -- 3.7 QSH Effect in InAs/GaSb Quantum Wells: Experiments -- 3.8 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 4 Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators -- 4.1 Introduction -- 4.2 Z2 Topological Insulators -- 4.3 Topological Kondo Insulator Candidates -- 4.4 Topological Quantum Phase Transitions -- 4.5 Topological Dirac Semimetals
4.6 Topological Crystalline Insulators -- 4.7 Magnetic and Superconducting Doped Topological Insulators -- Acknowledgements -- References -- Part II: Materials and Structures -- Chapter 5 Ab Initio Calculations of Two-Dimensional Topological Insulators -- 5.1 Introduction -- 5.2 Early Examples of 2D TIs -- 5.2.1 Graphene and the Quantum Spin Hall Effect -- 5.2.2 HgTe: Band Inversion and Topology in a 2D TI -- 5.3 Thin Bi and Sb Films -- 5.3.1 Bilayers -- 5.3.2 Thicker Layers -- 5.3.3 Alloyed Layers -- 5.3.4 Supported Layers -- 5.4 Compounds -- 5.4.1 Binary Compounds of A2B3 Type -- 5.4.2 Ternary Compounds: A'A2B4 and A'2A2B4 Types -- 5.5 Summary -- Acknowledgments -- References -- Chapter 6 Density Functional Theory Calculations of Topological Insulators -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Foundations of Density Functional Theory -- 6.2.2 Practical Aspects of DFT Calculations -- 6.2.3 Including Spin-Orbit Interactions -- 6.2.4 Calculating Z2 Topological Invariants -- 6.3 Bismuth Chalcogenide Topological Insulators: A Case Study -- 6.3.1 Bulk Band Structures of Bi2Se3 and Bi2Te3 -- 6.3.2 Topologically Protected States at the (111) Surface of Bismuth Chalcogenides -- 6.3.3 Nonstoichiometric and Functionalized Terminations of the Bi2Se3 (111) Surface -- 6.3.4 High-Index Surfaces of Bismuth Chalcogenides -- 6.4 Conclusions and Outlook -- References -- Chapter 7 Many-Body Effects in the Electronic Structure of Topological Insulators -- 7.1 Introduction -- 7.2 Theory -- 7.3 Computational Details -- 7.4 Calculations -- 7.4.1 Beyond the Perturbative One-Shot GW Approach -- 7.4.2 Analysis of the Band Inversion -- 7.4.3 Treatment of Spin-Orbit Coupling -- 7.4.4 Bulk Projected Band Structures -- 7.4.4.1 Bi2Se3 -- 7.4.4.2 Bi2Te3 -- 7.4.4.3 Sb2Te3 -- 7.5 Summary -- Acknowledgments -- References
Chapter 8 Surface Electronic Structure of Topological Insulators -- 8.1 Introduction -- 8.2 Bulk Electronic Structure of Topological Insulators and Topological Crystalline Insulators -- 8.3 Bulk and Surface State Topology in TIs and TCIs -- 8.4 Surface Electronic Structure in Selected Cases -- 8.4.1 Bi Chalcogenite-Based Topological Insulators -- 8.4.2 The Group V Semimetals and Their Alloys -- 8.4.3 Other Topological Insulators -- 8.4.4 Topological Crystalline Insulators -- 8.5 Stability of the Topological Surface States -- 8.5.1 Stability with Respect to Scattering -- 8.5.2 Stability of the Surface States' Existence -- Acknowledgements -- References -- Chapter 9 Probing Topological Insulator Surface States by Scanning Tunneling Microscope -- 9.1 Introduction -- 9.2 Sample Preparation Methods -- 9.3 STM and STS on Topological Insulator -- 9.3.1 Topography and Defects -- 9.3.2 STS and Band Structure of Topological Insulators -- 9.3.3 Landau Quantization of Topological Surface States -- 9.4 Conductance Map Analysis of Topological Insulator -- 9.4.1 Magnetically Doped Topological Insulator -- 9.4.2 Superconductor, Topological Insulator, and Majorana Zero Mode -- 9.5 Conclusions -- References -- Chapter 10 Growth and Characterization of Topological Insulators -- 10.1 History of Bismuth-Based Material Synthesis -- 10.2 Synthesis and Characterization of Crystals and Films -- 10.3 Native Defects and Achieving Bulk Insulation -- 10.4 New Material Candidates and Future Directions -- References -- Part III: Electronic Characterization and Transport Phenomena -- Chapter 11 Topological Insulator Nanostructures -- 11.1 Introduction -- 11.2 Topological Insulators: Experimental Progress and Challenges -- 11.3 Opportunities Enabled by Topological Insulator Nanostructures -- 11.4 Synthesis of Topological Insulator Nanostructures -- 11.4.1 Vapor-Phase Growth
11.4.2 Solution-Phase Growth -- 11.4.3 Exfoliation -- 11.4.4 Heterostructures -- 11.4.5 Doping and Alloying -- 11.5 Fermi Level Modulation and Bulk Carrier Control -- 11.6 Electronic Transport in Topological Insulator Nanostructures -- 11.6.1 Weak Antilocalization and Magnetic Topological Insulators -- 11.6.2 Shubnikov-de Haas Oscillations -- 11.6.3 Insulating Behavior at Ultrathin Limit -- 11.6.4 Aharonov-Bohm Effect and 1D Topological States -- 11.6.5 Superconducting Proximity Effect in TI Nanodevices -- 11.7 Applications and Future Perspective -- 11.8 Conclusion -- References -- Chapter 12 Topological Insulator Thin Films and Heterostructures: Epitaxial Growth, Transport, and Magnetism -- 12.1 Introduction -- 12.2 MBE Growth of Topological Insulators -- 12.2.1 HgTe -- 12.2.2 Bi and Sb Chalcogenides -- 12.2.2.1 Bi2Se3 -- 12.2.2.2 Bi2Te3 -- 12.2.2.3 Sb2Te3 -- 12.2.2.4 (Bi1-xSbx)2Te3 -- 12.2.2.5 Film Growth, Quality, and Stability -- 12.3 Transport Studies of TI Thin Films -- 12.3.1 Shubnikov-de Haas Oscillations -- 12.3.2 Quantum Corrections to Diffusive Transport in 3D TI Films -- 12.3.3 Mesoscopic Transport in 3D TI Films -- 12.3.4 Hybridization Gaps in Ultrathin 3D TI Films -- 12.4 Topological Insulators Interfaced with Magnetism -- 12.4.1 Bulk Ferromagnetism -- 12.4.2 Ferromagnetic Insulator/Topological Insulator Heterostructures -- 12.5 Conclusions and Future Outlook -- Acknowledgments -- References -- Chapter 13 Weak Antilocalization Effect, Quantum Oscillation, and Superconducting Proximity Effect in 3D Topological Insulators -- 13.1 Introduction -- 13.2 Weak Antilocalization in TIs -- 13.3 Quantum Oscillations in TIs -- 13.4 Superconducting Proximity Effect in TIs -- 13.5 Perspective -- References -- Chapter 14 Quantum Anomalous Hall Effect -- 14.1 Introduction to the Quantum Anomalous Hall Effect
14.1.1 The Hall Effect and Quantum Hall Effect -- 14.1.2 The Anomalous Hall Effect and Quantum Anomalous Hall Effect -- 14.2 Topological insulators and QAHE -- 14.3 Experimental Procedures for Realizing QAHE -- 14.3.1 Strategies for Experimental Observation of QAHE -- 14.3.2 Growth of Ultrathin TI Films by Molecular Beam Epitaxy -- 14.3.3 Band structure Engineering in (Bi1-xSbx)2Te3 ternary alloys -- 14.3.4 Ferromagnetism in Magnetically Doped Topological Insulators -- 14.3.5 Electrical Gate Tuning of the AHE -- 14.4 Experimental Observation of QAHE -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Interaction Effects on Transport in Majorana Nanowires -- 15.1 Introduction -- 15.2 Transport through Majorana Nanowires: General Considerations -- 15.2.1 Model -- 15.2.2 Majorana-Meir-Wingreen Formula -- 15.2.3 Conductance for the Noninteracting M=2 Case -- 15.3 Majorana Single-Charge Transistor -- 15.3.1 Charging Energy Contribution -- 15.3.2 Theoretical Approaches -- 15.3.3 Master Equation Approach -- 15.3.4 Coulomb Oscillations: Linear Conductance -- 15.3.5 From Resonant Andreev Reflection to Teleportation -- 15.3.6 Finite Bias Sidepeaks -- 15.3.7 Josephson Coupling to a Superconducting Lead -- 15.4 Topological Kondo Effect -- 15.4.1 Low-Energy Theory -- 15.4.2 Majorana Spin -- 15.4.3 Renormalization Group Analysis -- 15.4.4 Topological Kondo Fixed Point -- 15.4.5 Conductance Tensor -- 15.5 Conclusions and Outlook -- Acknowledgments -- References -- Index -- EULA
There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Ortmann, Frank Topological Insulators : Fundamentals and Perspectives Berlin : John Wiley & Sons, Incorporated,c2015 9783527337026
Subject Condensed matter.;Topological dynamics.;Nanostructured materials
Electronic books
Alt Author Roche, Stephan
Valenzuela, Sergio O
Molenkamp, Laurens W
Record:   Prev Next