LEADER 00000nam a22004813i 4500 
001    EBC880677 
003    MiAaPQ 
005    20200713055217.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2012    xx      o     ||||0 eng d 
020    9781139374873|q(electronic bk.) 
020    |z9780521190855 
035    (MiAaPQ)EBC880677 
035    (Au-PeEL)EBL880677 
035    (CaPaEBR)ebr10565092 
035    (CaONFJC)MIL363322 
035    (OCoLC)794327688 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QE606 .Y43 2012 
082 0  551.22 
100 1  Yeats, Robert 
245 10 Active Faults of the World 
264  1 Cambridge :|bCambridge University Press,|c2012 
264  4 |c©2012 
300    1 online resource (636 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Cover -- Active Faults of the World -- Title -- Copyright 
       -- Contents -- Preface: Introduction and historical 
       perspective -- 1: Methods and background -- 1.1 
       Introduction -- 1.2 Tectonics -- 1.2.1 Introduction -- 
       1.2.2 Plate tectonics -- 1.3 Structural geology -- 1.4 
       Seismic waves -- 1.4.1 Introduction -- 1.4.2 Orientation 
       of fault plane based on earthquakes -- 1.4.3 Magnitude 
       scales -- 1.5 Tectonic geodesy -- 1.5.1 Terrestrial 
       geodesy -- 1.5.2 Space geodesy -- 1.5.3 InSAR -- 1.5.4 In 
       situ stress -- 1.6 Earthquake geology at mainshock depths 
       -- 1.7 Quaternary dating techniques -- 1.7.1 Introduction 
       -- 1.7.2 Luminescence dating -- 1.7.3 Surface-exposure 
       dating with cosmogenic nuclides -- 1.8 Tectonic 
       geomorphology -- 1.8.1 Introduction -- 1.8.2 Scarp 
       degradation -- 1.8.3 Mountain-front sinuosity -- 1.9 
       Weathering and soils -- 1.10 Paleoseismology -- 1.10.1 
       Introduction -- 2: Alaska, Canada, Cascadia, and Eastern 
       North America -- 2.1 Introduction: the Pacific-North 
       America plate boundary -- 2.2 Alaska -- 2.2.1 Introduction
       -- 2.2.2 Aleutian subduction zone -- 2.2.3 Yakutat 
       collision zone -- 2.2.4 Alaskan crustal faults -- 2.3 
       Queen Charlotte-Fairweather transform boundary -- 2.4 
       Northwest Canada -- 2.5 Cascadia -- 2.5.1 Crustal 
       earthquakes -- 2.6 Earthquakes in eastern North America --
       2.6.1 Introduction -- 2.6.2 New Madrid seismic zone -- 
       2.6.3 Other seismic zones in eastern North America -- 
       2.6.4 Continental earthquakes with surface rupture -- 
       2.6.5 Concluding remarks -- 2.7 Summary -- 2.7.1 Siletzia:
       A large igneous province (LIP) in the hanging wall -- 
       2.7.2 Subduction without a W-B zone -- 2.7.3 Bookshelf 
       tectonics -- 2.7.4 Comparison of Aleutian and Cascadia 
       subduction zones -- 2.7.5 Subduction, coupling, and arc 
       volcanoes -- 3: San Andreas system and Basin and Range -- 
       3.1 Introduction 
505 8  3.2 San Andreas fault system: introduction and historical 
       background -- 3.3 Mendocino Transform and Triple Junction 
       -- 3.4 Northern San Andreas fault -- 3.5 San Francisco Bay
       region -- 3.6 Creeping SAF and Parkfield -- 3.7 Southern 
       San Andreas fault -- 3.8 San Jacinto fault -- 3.9 Other 
       right-lateral strike-slip faults west of the San Jacinto 
       fault -- 3.9.1 Summary statement -- 3.10 Left-lateral and 
       reverse faults west of the SAF -- 3.11 Los Angeles fold-
       and-thrust belt -- 3.12 Ventura basin -- 3.13 Southern 
       Coast Ranges -- 3.14 Baja California and Gulf of 
       California -- 3.15 Left-lateral faults east of the SAF -- 
       3.16 Eastern boundary faults of the Sierran microplate -- 
       3.16.1 Introduction -- 3.16.2 Eastern California shear 
       zone -- 3.17 Great Basin -- 3.17.1 Basin and Range normal-
       faulted province -- 3.17.2 Other Basin and Range 
       subprovinces -- 3.17.3 Rio Grande Rift -- 3.17.4 Southern 
       Basin and Range -- 3.18 The Oroville earthquakes -- 3.19 
       Summary -- 3.19.1 Importance of studying San Andreas fault
       and Basin and Range -- 3.19.2 Birth of a strike-slip fault
       -- 3.19.3 Three time frames to establish rates of faulting
       -- 3.19.4 Paleoseismology taken to the next level -- 
       3.19.5 Determining offsets on a migrating triple junction 
       -- 3.19.6 Restraining bends and earthquakes -- 3.19.7 
       Strain partitioning in Los Angeles -- 4: Caribbean Plate 
       and Middle America subduction zone -- 4.1 Overview -- 4.2 
       Northern boundary -- 4.3 Lesser Antilles subduction zone -
       - 4.4 Northern South America -- 4.5 Central America -- 4.6
       Mexican subduction zone -- 4.7 Summary -- 4.7.1 Importance
       of strain partitioning -- 4.7.2 Flipped subduction zone or
       bivergent crustal wedge? -- 4.7.3 Westward-propagating 
       earthquakes -- 4.7.4 Flat-slab subduction -- 4.7.5 End of 
       a plate-boundary fault -- 4.7.6 Paleoseismology of faulted
       limestone platforms 
505 8  4.7.7 Seismic hazard of the Central American volcanic 
       depression -- 4.7.8 Seismic hazard to large cities in the 
       developing world -- 5: South America -- 5.1 Introduction -
       - 5.2 North Andean Block -- 5.3 Central Andes -- 5.4 
       Southern Andes -- 5.5 South America East of the Andes -- 
       5.6 Summary -- 5.6.1 Normally dipping vs. flat-slab 
       subduction -- 5.6.2 How long have the flat slabs been 
       flat? -- 5.6.3 Uplift of the Altiplano and Puna plateaus -
       - 5.6.4 North-south extension and the effect of high 
       topography -- 5.6.5 Maximum size of earthquakes at the 
       Nazca-South America plate boundary -- 6: Africa, Arabia, 
       and Western Europe -- 6.1 Introduction -- 6.2 East African
       Rift Valleys -- 6.3 Ethiopian Rift and the Afar Triangle -
       - 6.4 Earthquakes of the African continental shield -- 6.5
       The Africa-Eurasia plate boundary west of Gibraltar -- 6.6
       Iberia and the Great 1755 Lisbon Earthquake -- 6.7 The 
       Atlas ranges of North Africa -- 6.8 Italy -- 6.9 Adria and
       the Alps -- 6.10 European Rift System and the 1356 Basel, 
       Switzerland, earthquake -- 6.11 Scandinavia -- 6.12 
       Scotland -- 6.13 Iceland -- 6.14 Summary -- 6.14.1 
       Earthquakes and spreading centers -- 6.14.2 Earthquake 
       hazard to large cities in the Rift Valleys -- 6.14.3 
       Earthquake hazard of single-event fault scarps -- 6.14.4 
       Seismotectonics of deglaciation -- 7: Eastern 
       Mediterranean, the Caucasus, and the Middle East -- 7.1 
       Introduction -- 7.2 Carpathian Ranges and the Pannonian 
       Basin -- 7.3 Greece and the Southern Balkans -- 7.3.1 
       Introduction -- 7.3.2 Hellenic subduction zone -- 7.3.3 
       South Aegean normal fault region -- 7.3.4 The Gulf of 
       Corinth graben and other east-west faults -- 7.3.5 Reverse
       faults of Epirus and the Ionian Islands -- 7.3.6 
       Earthquakes in the slow lane: normal faults of Northern 
       Greece and Bulgaria -- 7.3.7 The North Anatolian fault 
       (NAF) in the Northern Aegean Sea -- 7.4 Cyprus and Turkey 
505 8  7.4.1 Introduction -- 7.4.2 North Anatolian fault -- 7.4.3
       East Anatolian fault -- 7.4.4 Other Anatolian faults -- 
       7.5 Dead Sea fault (DSF) -- 7.5.1 Introduction -- 7.5.2 
       Gulf of Aqaba and Araba Valley -- 7.5.3 The Dead Sea Basin
       : tales from the Bible -- 7.5.4 The Dead Sea fault from 
       Jericho to the Sea of Galilee and Hula Basin -- 7.5.5 The 
       restraining bend -- 7.5.6 Northern segment in Syria and 
       Turkey -- 7.5.7 Source of tsunamis on the Levant and 
       Israel coast -- 7.6 The Caucasus and surrounding areas -- 
       7.7 The Caspian Sea, the Kopeh Dagh, and Iran -- 7.7.1 
       Turkmenistan and the Kopeh Dagh -- 7.7.2 Iran: 
       introduction -- 7.7.3 Alborz Mountains -- 7.7.4 Central 
       Iran -- 7.7.5 Zagros Mountains -- 7.8 Summary -- 7.8.1 The
       2000 forecast of the next earthquake to strike İstanbul --
       7.8.2 Implications of 60 000 years of paleoseismology on 
       the Dead Sea fault -- 7.8.3 Are Mediterranean normal 
       faults listric? -- 7.8.4 Athens, 1999: the unexpected 
       earthquake -- 7.8.5 Subduction, Mediterranean style -- 
       7.8.6 Desert cities, earthquakes, and water -- 8: India, 
       the Himalaya, Mainland China, and Central Asia -- 8.1 
       Introduction -- 8.2 Makran subduction zone -- 8.3 India 
       Plate -- 8.3.1 Introduction -- 8.3.2 Indian shield -- 
       8.3.3 Western transform boundary: the Chaman fault system 
       -- 8.3.4 Eastern transform boundary: Indo-Burman Ranges 
       and the Sagaing fault -- 8.4 Himalaya -- 8.4.1 
       Introduction -- 8.4.2 Tectonic setting -- 8.4.3 
       Convergence rates -- 8.4.4 Seismicity -- 8.5 Tibet -- 
       8.5.1 Southern Tibet -- 8.5.2 Faults of eastern Tibetan 
       Plateau -- 8.6 Earthquakes along the Silk Road -- 8.6.1 
       Hexi Corridor and Qilian Shan -- 8.7 Grabens around the 
       Ordos Plateau -- 8.7.1 Introduction -- 8.8 Northeast China
       -- 8.8.1 Introduction -- 8.8.2 Tan-Lu fault -- 8.8.3 
       Faults near Beijing -- 8.9 Central Asia -- 8.9.1 Hindu 
       Kush, Pamirs, and Karakoram ranges 
505 8  8.9.2 Active tectonics of the Celestial Mountains -- 8.9.3
       Strike-slip faults in the Altay Ranges -- 8.10 Baikal Rift
       -- 8.11 Summary -- 8.11.1 SCR earthquakes -- 8.11.2 Giant 
       continental subduction-zone earthquakes -- 8.11.3 Large 
       cities, small countries, and dangerous faults -- 8.11.4 
       Tsunami hazard in the Bay of Bengal -- 8.11.5 East Asian 
       superquakes -- 9: Japan and the Western Pacific -- 9.1 
       Introduction -- 9.2 Tectonic setting -- 9.3 Kuril 
       subduction zone -- 9.4 Northeast Japan subduction zone and
       the 2011 Tohoku-oki earthquake -- 9.5 Okhotsk-Amurian 
       plate boundary -- 9.6 Itoigawa-Shizuoka Tectonic Line 
       (ISTL) -- 9.7 Southwest Japan: the Nankai subduction zone 
       -- 9.7.1 Introduction and tectonic expression of the 
       Nankai plate boundary -- 9.7.2 A thirteen-century record 
       of Nankai subduction -- 9.7.3 Summary of 1944 Tonankai and
       1946 Nankaido earthquakes -- 9.7.4 Izu collision zone and 
       Sagami Trough -- 9.7.5 Crustal faults of southwest Japan -
       - 9.7.6 Ryukyu subduction zone -- 9.8 Taiwan -- 9.8.1 
       Historical background -- 9.8.2 Tectonic setting -- 9.9 
       Summary -- 9.9.1 The 2011 Tohoku-oki earthquake and 
       Maximum Considered Earthquakes (MCE) -- 9.9.2 Are Nankai 
       earthquakes periodic? -- 9.9.3 Cusps versus flat-slab 
       subduction -- 9.9.4 Slip-rate budgets and characteristic 
       earthquakes -- 10: Southeast Asia, Australia, New Zealand,
       and Pacific Islands -- 10.1 Introduction -- 10.2 Sunda 
       Plate -- 10.2.1 Introduction -- 10.2.2 Red River fault -- 
       10.2.3 Active faults in the Golden Triangle: northern Laos
       and Thailand and eastern Myanmar -- 10.2.4 Other faults in
       the Sunda Plate -- 10.3 Java, Sumatra, and Andaman 
       subduction zone -- 10.3.1 Introduction -- 10.3.2 Sumatran 
       fault and other forearc faults -- 10.3.3 The Sumatran 
       subduction zone -- 10.3.4 Java subduction zone -- 10.3.5 
       Timor to Banda Arc -- 10.4 The Philippines, Sulawesi, and 
       the Moluccas 
505 8  10.4.1 Introduction 
520    The first worldwide survey of active earthquake faults, 
       providing an important basis for protecting threatened 
       cities in the developing world 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Faults (Geology);Geology, Structural 
655  4 Electronic books 
776 08 |iPrint version:|aYeats, Robert|tActive Faults of the 
       World|dCambridge : Cambridge University Press,c2012
       |z9780521190855 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=880677|zClick to View