LEADER 00000nam a22004813i 4500 
001    EBC1129769 
003    MiAaPQ 
005    20200713055238.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2013    xx      o     ||||0 eng d 
020    9783527670437|q(electronic bk.) 
020    |z9783527324569 
035    (MiAaPQ)EBC1129769 
035    (Au-PeEL)EBL1129769 
035    (CaPaEBR)ebr10662568 
035    (CaONFJC)MIL455398 
035    (OCoLC)829460534 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 RB155.8 -- .M56 2013eb 
082 0  615.895 
100 1  Schleef, Martin 
245 10 Minicircle and Miniplasmid DNA Vectors :|bThe Future of 
       Non-Viral and Viral Gene Transfer 
250    1st ed 
264  1 Weinheim :|bJohn Wiley & Sons, Incorporated,|c2013 
264  4 |c©2013 
300    1 online resource (259 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Minicircle and Miniplasmid DNA Vectors: The Future of Non-
       Viral and Viral Gene Transfer -- Contents -- List of 
       Contributors -- Perface -- 1 Minicircle Patents: A Short 
       IP Overview of Optimizing Nonviral DNA Vectors -- 2 
       Operator-Repressor Titration: Stable Plasmid Maintenance 
       without Selectable Marker Genes -- 2.1 Introduction -- 2.2
       Antibiotics and Metabolic Burden -- 2.3 The Mechanism of 
       ORT -- 2.4 ORT Strain Development -- 2.5 ORT Miniplasmids 
       -- 2.6 DNA Vaccine and Gene Therapy Vectors -- 2.7 ORT-VAC
       : Plasmid-Based Vaccine Delivery Using Salmonella enterica
       -- 2.8 Recombinant Protein Expression -- 2.9 Conclusions 
       and Future Developments -- References -- 3 Selection by 
       RNA-RNA Interaction: Maximally Minimized Antibiotic 
       Resistance-Free Plasmids -- 3.1 Gene Therapy and DNA 
       Vaccines: Emerging Technologies -- 3.1.1 Therapeutic 
       Plasmids: General Design Principles -- 3.2 Therapeutic 
       Plasmids: Novel Design and the Problem of Selection -- 
       3.2.1 Replication Control of ColE1-Type Plasmids as an 
       Alternative Selection Marker -- 3.2.2 The MINIback Concept
       : Selection by RNA-RNA Interaction -- 3.2.3 Improved 
       Production Processes by MINIback Plasmids -- 3.2.4 
       Improving Sequence Composition -- 3.2.5 Efficient Gene 
       Transfer -- 3.3 Conclusions -- Acknowledgments -- 
       References -- 4 Plasmid-Based Medicinal Products - Focus 
       on pFAR: A Miniplasmid Free of Antibiotic Resistance 
       Markers -- 4.1 Introduction: Rationale for the Development
       of Biosafe DNA Plasmid Vectors -- 4.2 Specific 
       Requirements for the Use of DNA Product as Medicines -- 
       4.2.1 Requirements for Plasmid Quality and Purity -- 4.2.2
       Requirements for the Removal of Antibiotic Resistance 
       Markers from Plasmid DNA -- 4.2.2.1 Requirements for 
       Biosafe Plasmids -- 4.2.2.2 Positive Impact on the Removal
       of Antibiotic Resistance Markers 
505 8  4.2.2.3 Effect of Plasmid Size on Gene Transfer Efficiency
       In Vitro and In Vivo -- 4.3 Nonviral Gene Vectors Devoid 
       of Antibiotic Resistance Markers -- 4.3.1 Generalities -- 
       4.3.2 Selection Systems Devoid of Antibiotic Resistance 
       Markers -- 4.3.2.1 Complementation of Host Auxotrophy by a
       Function-Encoded Plasmid -- 4.3.2.2 The Operator-Repressor
       Titration (ORT) System -- 4.3.2.3 Protein-Based Antidote/
       Poison Selection Systems -- 4.3.2.4 RNA-Based Selection 
       Marker -- 4.3.2.5 Suppression of a Nonsense Mutation -- 
       4.4 The pFAR Plasmid Family -- 4.4.1 Description of the 
       Antibiotic-Free Selection System -- 4.4.2 pFAR Vectors 
       Promote Efficient Expression in Several Types of Mammalian
       Cells -- 4.4.2.1 In Vitro Transfection Study -- 4.4.2.2 In
       Vivo Transfection Studies -- 4.4.3 Concluding Remarks on 
       the pFAR4 Biosafe Miniplasmid -- 4.5 Concluding Remarks 
       and Perspectives -- Acknowledgments -- References -- 5 
       Plasmid DNA Concatemers: Influence of Plasmid Structure on
       Transfection Efficiency -- 5.1 Introduction -- 5.2 Plasmid
       DNA Topology and Size -- 5.3 Plasmid DNA Concatemers -- 
       5.4 Conclusions -- Acknowledgments -- References -- 6 
       Analytical Tools in Minicircle Production -- 6.1 
       Introduction -- 6.1.1 Gene Transfer for Therapy, 
       Vaccination, and Stem Cells -- 6.1.2 Plasmids -- 6.1.3 
       Minicircle Systems -- 6.2 Production of Minicircles -- 
       6.2.1 The Parental Plasmid -- 6.2.2 Cultivation and 
       Induction -- 6.2.3 Minicircle Preparation -- 6.3 Analytics
       of Minicircle Production -- 6.3.1 In-Process Control -- 
       6.3.1.1 Atomic Force Microscopy -- 6.3.1.2 Capillary Gel 
       Electrophoresis -- 6.3.1.3 Continuous Flow Separation in 
       Microfluidic Channels -- 6.3.2 Finished Product Control --
       6.4 Future Goals -- Acknowledgments -- References -- 7 
       Utilizing Minicircle Vectors for the Episomal Modification
       of Cells -- 7.1 Introduction 
505 8  7.2 Studies that Show Passive Episomal Maintenance of 
       Minicircles In Vivo -- 7.3 Principles of Generating 
       Minicircle Vectors Able to Support Episomal Maintenance --
       7.3.1 Episomal Maintenance of Minicircle S/MAR Vectors 
       Generated by Flp Recombinase In Vitro -- 7.3.2 Episomal 
       Maintenance of Minicircle S/MAR Vectors Generated Using 
       Cre Recombinase In Vitro -- 7.3.3 Episomal Maintenance of 
       S/MAR Vectors in Bovine and Murine Zygotes -- 7.4 Episomal
       Maintenance of S/MAR Minicircles In Vivo -- 7.5 Potential 
       of Episomal Replication of S/MAR Minicircle Vectors -- 7.6
       Possible Mechanisms Promoting the Episomal Maintenance of 
       Minicircle Vectors -- 7.6.1 Histone Modifications -- 7.6.2
       CpG Dinucleotide Content Reduction -- 7.6.3 Vector 
       Establishment in the Correct Nuclear Compartment -- 7.6.4 
       Access to Replication Machinery by S/MARs -- 7.7 
       Conclusions -- References -- 8 Replicating Minicircles: 
       Overcoming the Limitations of Transient and Stable 
       Expression Systems -- 8.1 Gene Therapy: The Advent of 
       Novel Vector Vehicles -- 8.1.1 Nonviral Vectors Avoiding 
       Genomic Disturbances -- 8.1.2 Independent Expression Units
       : Chromatin Domains -- 8.1.2.1 S/MARs: a Unifying 
       Principle -- 8.1.2.2 S/MAR Actions Are Multifold and 
       Context Dependent -- 8.1.2.3 Stress-Induced Duplex 
       Destabilization: a Unifying Property of S/MARs -- 8.1.2.4 
       Chromosome-Based Expression Strategies: Episomes and/or 
       Predetermined Integration Sites (RMCE) -- 8.2 Replicating 
       Nonviral Episomes -- 8.2.1 Can the Yeast ARS Principle Be 
       Verified for Mammalian Cells? -- 8.2.2 ARS and S/MARs: 
       Common (SIDD-) Properties -- 8.2.3 S/MAR Plasmids: 
       Verification of the Concept -- 8.2.3.1 Transcription into 
       the S/MAR: Directionality and Rate -- 8.2.3.2 Cell and 
       Nuclear Permeation -- 8.2.3.3 Nuclear Association Sites --
       8.2.3.4 RMCE-Based Elaboration Following Establishment 
505 8  8.2.4 Remaining Shortcomings and Their Solution -- 8.2.4.1
       Establishment and Maintenance: the EBV Paradigm -- 8.2.4.2
       Vector Size Limitations -- 8.3 Minimalization Approaches -
       - 8.3.1 Oligomerizing S/MAR Modules: pMARS and Its 
       Properties -- 8.3.2 Replicating Minicircles: a Solution 
       with Great Promise -- 8.3.2.1 Establishment and 
       Maintenance Parameters -- 8.3.2.2 Clonal Behavior -- 
       8.3.2.3 Bi-MC Systems -- 8.3.2.4 MC Size Reduction: "In 
       Vivo Evolution" -- 8.3.2.5 Transcriptional Termination and
       Polyadenylation: an Intricate Interplay -- 8.3.2.6 
       Episomal Status: Proof and Persistence -- 8.3.3 Emerging 
       Extensions and Refinements -- 8.3.3.1 Combination of 
       Excision and RMCE Strategies -- 8.3.3.2 MC Withdrawal at 
       Will -- 8.3.3.3 Pronuclear Injection and Somatic Cell 
       Nuclear Transfer -- 8.3.3.4 From Cells to Organs -- 8.4 
       Summary and Outlook -- Acknowledgments -- References -- 9 
       Magnetofection of Minicircle DNA Vectors -- 9.1 
       Introduction -- 9.2 Overview of Magnetofection Principles 
       -- 9.3 Cellular Uptake -- 9.4 Diffusion through the 
       Cytoplasm -- 9.5 Transgene Expression -- 9.6 Conclusions -
       - References -- 10 Minicircle-Based Vectors for Nonviral 
       Gene Therapy: In Vitro Characterization and In Vivo 
       Application -- 10.1 Minicircle Technology for Nonviral 
       Gene Therapy -- 10.2 Current Status of In Vivo Application
       of Minicircle Vectors -- 10.3 Jet Injection Technology for
       In Vivo Transfer of Naked DNA -- 10.4 Comparative 
       Performance Analyses of Minicircle Vectors -- 10.5 In Vivo
       Application of Minicircle DNA by Jet Injection -- 
       References -- 11 Episomal Expression of Minicircles and 
       Conventional Plasmids in Mammalian Embryos -- 11.1 
       Introduction -- 11.2 Fate of Plasmids and Minicircles 
       After Injection into Mammalian Embryos -- 11.2.1 
       Minicircle- and Plasmid-Mediated Expression in Early 
       Embryos and Fetuses 
505 8  11.2.2 Expression of Functional Genes in Preimplantation 
       Embryos -- 11.3 Discussion -- References -- 12 Tissue-
       Targeted Gene Electrodelivery of Minicircle DNA -- 12.1 
       Introduction -- 12.2 Plasmid DNA Electrotransfer: From 
       Principle to Technical Design -- 12.2.1 Mechanism of Gene 
       Electrotransfer -- 12.2.2 Preclinical Applications -- 12.3
       Implementation for Efficient Tissue-Targeted Gene Delivery
       -- 12.3.1 Design of DNA Vector -- 12.3.2 In Vitro 
       Minicircle Electrotransfer -- 12.3.3 In Vivo MC 
       Electrotransfer -- 12.3.3.1 Muscle -- 12.3.3.2 Tumor -- 
       12.3.3.3 Skin -- 12.4 Conclusions -- Acknowledgments -- 
       References -- 13 Increased Efficiency of Minicircles 
       Versus Plasmids Under Gene Electrotransfer Suboptimal 
       Conditions: an Influence of the Extracellular Matrix -- 
       13.1 Introduction -- 13.2 Methods -- 13.2.1 Cell Culture 
       and Animals -- 13.2.2 Minicircle and Plasmid -- 13.2.3 
       Electrotransfer -- 13.2.4 Determination of the Reporter 
       Gene (Luciferase) Activity -- 13.2.5 Data Analysis -- 13.3
       Results -- 13.3.1 In Vitro -- 13.3.2 In Vivo -- 13.4 
       Discussion -- 13.5 Conclusions -- Acknowledgments -- 
       References -- Index 
520    Dr. Martin Schleef studied Biology at the Universities of 
       Würzburg and Bielefeld, Germany and holds a PhD from the 
       University of Bielefeld. Martin Schleef received post-
       doctoral training from the Institut Pasteur Paris, France.
       He joined QIAGEN GmbH, Hilden, Germany in 1994 and is co-
       founder and CEO of PlasmidFactory in Bielefeld since 2000 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Gene therapy.;Genetic vectors.;Plasmids 
655  4 Electronic books 
776 08 |iPrint version:|aSchleef, Martin|tMinicircle and 
       Miniplasmid DNA Vectors : The Future of Non-Viral and 
       Viral Gene Transfer|dWeinheim : John Wiley & Sons, 
       Incorporated,c2013|z9783527324569 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1129769|zClick to View