Record:   Prev Next
Author Tzafestas, Spyros G
Title Introduction to Mobile Robot Control
Imprint Saint Louis : Elsevier, 2013
©2014
book jacket
Descript 1 online resource (718 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Front Cover -- Introduction to Mobile Robot Control -- Copyright Page -- Dedication -- Contents -- Preface -- List of acknowledged authors and collaborators -- Principal symbols and acronyms -- Quotations about robotics -- 1 Mobile Robots: General Concepts -- 1.1 Introduction -- 1.2 Definition and History of Robots -- 1.2.1 What Is a Robot? -- 1.2.2 Robot History -- 1.2.2.1 Ancient and Preindustrial Period -- 1.2.2.2 Industrial and Robosapien Period -- 1.3 Ground Robot Locomotion -- 1.3.1 Legged Locomotion -- 1.3.2 Wheeled Locomotion -- 1.3.2.1 Wheel Types -- 1.3.2.2 Drive Types -- 1.3.2.3 WMR Maneuverability -- References -- 2 Mobile Robot Kinematics -- 2.1 Introduction -- 2.2 Background Concepts -- 2.2.1 Direct and Inverse Robot Kinematics -- 2.2.2 Homogeneous Transformations -- 2.2.3 Nonholonomic Constraints -- 2.3 Nonholonomic Mobile Robots -- 2.3.1 Unicycle -- 2.3.2 Differential Drive WMR -- 2.3.3 Tricycle -- 2.3.4 Car-Like WMR -- 2.3.5 Chain and Brockett-Integrator Models -- 2.3.5.1 Unicycle WMR -- 2.3.5.2 Rear-Wheel Driving Car -- 2.3.6 Car-Pulling Trailer WMR -- 2.4 Omnidirectional WMR Kinematic Modeling -- 2.4.1 Universal Multiwheel Omnidirectional WMR -- 2.4.2 Four-Wheel Omnidirectional WMR with Mecanum Wheels -- References -- 3 Mobile Robot Dynamics -- 3.1 Introduction -- 3.2 General Robot Dynamic Modeling -- 3.2.1 Newton-Euler Dynamic Model -- 3.2.2 Lagrange Dynamic Model -- 3.2.3 Lagrange Model of a Multilink Robot -- 3.2.4 Dynamic Modeling of Nonholonomic Robots -- 3.3 Differential-Drive WMR -- 3.3.1 Newton-Euler Dynamic Model -- 3.3.2 Lagrange Dynamic Model -- 3.3.3 Dynamics of WMR with Slip -- 3.4 Car-Like WMR Dynamic Model -- 3.5 Three-Wheel Omnidirectional Mobile Robot -- 3.6 Four Mecanum-Wheel Omnidirectional Robot -- References -- 4 Mobile Robot Sensors -- 4.1 Introduction -- 4.2 Sensor Classification and Characteristics
4.2.1 Sensor Classification -- 4.2.2 Sensor Characteristics -- 4.3 Position and Velocity Sensors -- 4.3.1 Position Sensors -- 4.3.2 Velocity Sensors -- 4.4 Distance Sensors -- 4.4.1 Sonar Sensors -- 4.4.2 Laser Sensors -- 4.4.3 Infrared Sensors -- 4.5 Robot Vision -- 4.5.1 General Issues -- 4.5.2 Sensing -- 4.5.2.1 Camera Calibration -- 4.5.2.2 Image Acquisition -- 4.5.2.3 Illumination -- 4.5.2.4 Imaging Geometry -- 4.5.3 Preprocessing -- 4.5.4 Image Segmentation -- 4.5.5 Image Description -- 4.5.6 Image Recognition -- 4.5.7 Image Interpretation -- 4.5.8 Omnidirectional Vision -- 4.6 Some Other Robotic Sensors -- 4.6.1 Gyroscope -- 4.6.2 Compass -- 4.6.3 Force and Tactile Sensors -- 4.6.3.1 Force Sensors -- 4.6.3.2 Tactile Sensors -- 4.7 Global Positioning System -- 4.8 Appendix: Lens and Camera Optics -- References -- 5 Mobile Robot Control I: The Lyapunov-Based Method -- 5.1 Introduction -- 5.2 Background Concepts -- 5.2.1 State-Space Model -- 5.2.2 Lyapunov Stability -- 5.2.3 State Feedback Control -- 5.2.4 Second-Order Systems -- 5.3 General Robot Controllers -- 5.3.1 Proportional Plus Derivative Position Control -- 5.3.2 Lyapunov Stability-Based Control Design -- 5.3.3 Computed Torque Control -- 5.3.4 Robot Control in Cartesian Space -- 5.3.4.1 Resolved Motion Rate Control -- 5.3.4.2 Resolved Motion Acceleration Control -- 5.4 Control of Differential Drive Mobile Robot -- 5.4.1 Nonlinear Kinematic Tracking Control -- 5.4.2 Dynamic Tracking Control -- 5.5 Computed Torque Control of Differential Drive Mobile Robot -- 5.5.1 Kinematic Tracking Control -- 5.5.2 Dynamic Tracking Control -- 5.6 Car-Like Mobile Robot Control -- 5.6.1 Parking Control -- 5.6.2 Leader-Follower Control -- 5.6.2.1 Kinematic Controller -- 5.6.2.2 Dynamic Controller -- 5.7 Omnidirectional Mobile Robot Control -- References
6 Mobile Robot Control II: Affine Systems and Invariant Manifold Methods -- 6.1 Introduction -- 6.2 Background Concepts -- 6.2.1 Affine Dynamic Systems -- 6.2.2 Manifolds -- 6.2.3 Lyapunov Stability Using Invariant Sets -- 6.3 Feedback Linearization of Mobile Robots -- 6.3.1 General Issues -- 6.3.2 Differential-Drive Robot Input-Output Feedback Linearization and Trajectory Tracking -- 6.3.2.1 Kinematic Constraint Revisited -- 6.3.2.2 Input-Output Linearization -- 6.3.2.3 Trajectory Tracking Control -- 6.4 Mobile Robot Feedback Stabilizing Control Using Invariant Manifolds -- 6.4.1 Stabilizing Control of Unicycle in Chained Model Form -- 6.4.2 Dynamic Control of Differential-Drive Robots Modeled by the Double Brockett Integrator -- 6.4.3 Stabilizing Control of Car-Like Robot in Chained Model Form -- References -- 7 Mobile Robot Control III: Adaptive and Robust Methods -- 7.1 Introduction -- 7.2 Background Concepts -- 7.2.1 Model Reference Adaptive Control -- 7.2.1.1 Steepest Descent Parameter Adaptation Law -- 7.2.1.2 Lyapunov-Based Adaptation Law -- 7.2.2 Robust Nonlinear Sliding Mode Control -- 7.2.3 Robust Control Using the Lyapunov Stabilization Method -- 7.3 Model Reference Adaptive Control of Mobile Robots -- 7.3.1 Differential Drive WMR -- 7.3.2 Adaptive Control Via Input-Output Linearization -- 7.3.2.1 Tracking Control for Known Parameters -- 7.3.2.2 Adaptive Tracking Controller -- 7.3.3 Omnidirectional Robot -- 7.4 Sliding Mode Control of Mobile Robots -- 7.5 Sliding Mode Control in Polar Coordinates -- 7.5.1 Modeling -- 7.5.2 Sliding Mode Control -- 7.6 Robust Control of Differential Drive Robot Using the Lyapunov Method -- 7.6.1 Nominal Controller -- 7.6.2 Robustifying Controller -- References -- 8 Mobile Robot Control IV: Fuzzy and Neural Methods -- 8.1 Introduction -- 8.2 Background Concepts -- 8.2.1 Fuzzy Systems -- 8.2.1.1 Fuzzy Sets
Fuzzy Set Operations -- Fuzzy Set Image -- Fuzzy Inference -- Fuzzy Relations -- Zadeh's Max-Min Composition -- 8.2.1.2 FSs Structure -- 8.2.2 Neural Networks -- 8.2.2.1 The Basic Artificial Neuron Model -- 8.2.2.2 The Multilayer Perceptron -- 8.2.2.3 The Backpropagation Algorithm -- 8.2.2.4 The RBF Network -- 8.2.2.5 The Universal Approximation Property -- Neural Network Approximator -- Fuzzy Logic Universal Approximator -- 8.3 Fuzzy and Neural Robot Control: General Issues -- 8.3.1 Fuzzy Robot Control -- 8.3.2 Neural Robot Control -- 8.4 Fuzzy Control of Mobile Robots -- 8.4.1 Adaptive Fuzzy Tracking Controller -- 8.4.2 Fuzzy Local Path Tracker for Dubins Car -- 8.4.2.1 The Problem -- 8.4.2.2 Tracking Methodology -- 8.4.3 Fuzzy Sliding Mode Control -- 8.4.3.1 The Mobile Robot Model -- 8.4.3.2 Similarity of Fuzzy Logic Controller and Sliding Mode Controller -- 8.4.3.3 Analytical Representation of a Diagonal-Type FLC -- 8.4.3.4 Reduced Complexity Sliding Mode Fuzzy Logic Controller -- 8.4.3.5 Application to the Mobile Robot -- 8.5 Neural Control of Mobile Robots -- 8.5.1 Adaptive Tracking Controller Using MLP Network -- 8.5.2 Adaptive Tracking Controller Using RBF Network -- 8.5.3 Appendix: Proof of Neurocontroller Stability -- References -- 9 Mobile Robot Control V: Vision-Based Methods -- 9.1 Introduction -- 9.2 Background Concepts -- 9.2.1 Classification of Visual Robot Control -- 9.2.2 Kinematic Transformations -- 9.2.3 Camera Visual Transformations -- 9.2.4 Image Jacobian Matrix -- 9.3 Position-Based Visual Control: General Issues -- 9.3.1 Point-to-Point Positioning -- 9.3.2 Pose-Based Motion Control -- 9.4 Image-Based Visual Control: General Issues -- 9.4.1 Use of the Inverse Jacobian -- 9.4.2 Use of the Transpose-Extended Jacobian -- 9.4.3 Estimation of the Image Jacobian Matrix -- 9.5 Mobile Robot Visual Control
9.5.1 Pose Stabilizing Control -- 9.5.2 Wall Following Control -- 9.5.3 Leader-Follower Control -- 9.6 Keeping a Landmark in the Field of View -- 9.7 Adaptive Linear Path Following Visual Control -- 9.7.1 Image Jacobian Matrix -- 9.7.2 The Visual Controller -- 9.7.2.1 Kinematic Controller -- 9.7.2.2 Dynamic Controller -- 9.7.2.3 Adaptive Controller -- 9.8 Image-Based Mobile Robot Visual Servoing -- 9.9 Mobile Robot Visual Servoing Using Omnidirectional Vision -- 9.9.1 General Issues: Hyperbola, Parabola, and Ellipse equations -- 9.9.2 Catadioptric Projection Geometry -- 9.9.3 Omnidirectional Vision-Based Mobile Robot Visual Servoing -- References -- 10 Mobile Manipulator Modeling and Control -- 10.1 Introduction -- 10.2 Background Concepts -- 10.2.1 The Denavit-Hartenberg Method -- 10.2.2 Robot Inverse Kinematics -- 10.2.3 Manipulability Measure -- 10.2.4 The Two-Link Planar Robot -- 10.2.4.1 Kinematics -- 10.2.4.2 Dynamics -- 10.2.4.3 Manipulability Measure -- 10.3 MM Modeling -- 10.3.1 General Kinematic Model -- 10.3.2 General Dynamic Model -- 10.3.3 Modeling a Five Degrees of Freedom Nonholonomic MM -- 10.3.3.1 Kinematics -- 10.3.3.2 Dynamics -- 10.3.4 Modeling an Omnidirectional MM -- 10.3.4.1 Kinematics -- 10.3.4.2 Dynamics -- 10.4 Control of MMs -- 10.4.1 Computed-Torque Control of Differential-Drive MM -- 10.4.2 Sliding-Mode Control of Omnidirectional MM -- 10.5 Vision-Based Control of MMs -- 10.5.1 General Issues -- 10.5.2 Full-State MM Visual Control -- References -- 11 Mobile Robot Path, Motion, and Task Planning -- 11.1 Introduction -- 11.2 General Concepts -- 11.3 Path Planning of Mobile Robots -- 11.3.1 Basic Operations of Robot Navigation -- 11.3.2 Classification of Path Planning Methods -- 11.4 Model-Based Robot Path Planning -- 11.4.1 Configuration Space -- 11.4.2 Road Map Path Planning Methods -- 11.4.2.1 Road Maps
11.4.2.2 Cell Decomposition
Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. Clearly and authoritatively presents mobile robot concepts Richly illustrated throughout with figures and examples Key concepts demonstrated with a host of experimental and simulation examples No prior knowledge of the subject is required; each chapter commences with an introduction and background
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Tzafestas, Spyros G. Introduction to Mobile Robot Control Saint Louis : Elsevier,c2013 9780124170490
Subject Mobile robots.;Robots -- Control systems.;Autonomous robots
Electronic books
Record:   Prev Next