Record:   Prev Next
Author Günther, Harald
Title NMR Spectroscopy : Basic Principles, Concepts and Applications in Chemistry
Imprint Somerset : John Wiley & Sons, Incorporated, 2013
©2013
book jacket
Edition 3rd ed
Descript 1 online resource (736 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note NMR Spectroscopy -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Literature -- 1.2 Units and Constants -- References -- Part I Basic Principles and Applications -- Chapter 2 The Physical Basis of the Nuclear Magnetic Resonance Experiment. Part I -- 2.1 The Quantum Mechanical Model for the Isolated Proton -- 2.2 Classical Description of the NMR Experiment -- 2.3 Experimental Verification of Quantized Angular Momentum and of the Resonance Equation -- 2.4 The NMR Experiment on Compact Matter and the Principle of the NMR Spectrometer -- 2.4.1 How to Measure an NMR Spectrum -- 2.5 Magnetic Properties of Nuclei beyond the Proton -- References -- Chapter 3 The Proton Magnetic Resonance Spectra of Organic Molecules - Chemical Shift and Spin-Spin Coupling -- 3.1 The Chemical Shift -- 3.1.1 Chemical Shift Measurements -- 3.1.2 Integration of the Spectrum -- 3.1.3 Structural Dependence of the Resonance Frequency - A General Survey -- 3.2 Spin-Spin Coupling -- 3.2.1 Simple Rules for the Interpretation of Multiplet Structures -- 3.2.2 Spin-Spin Coupling with Other Nuclei -- 3.2.2.1 Nuclei of Spin I=12 -- 3.2.2.2 Nuclei of Spin I>12 -- 3.2.3 Limits of the Simple Splitting Rules -- 3.2.3.1 The Notion of Magnetic Equivalence -- 3.2.3.2 Significance of the Ratio J/ν0δ -- 3.2.4 Spin-Spin Decoupling -- 3.2.5 Two-Dimensional NMR - the COSY Experiment -- 3.2.6 Structural Dependence of Spin-Spin Coupling - A General Survey -- References -- Chapter 4 General Experimental Aspects of Nuclear Magnetic Resonance Spectroscopy -- 4.1 Sample Preparation and Sample Tubes -- 4.2 Internal and External Standards -- Solvent Effects -- 4.3 Tuning the Spectrometer -- 4.4 Increasing the Sensitivity -- 4.5 Measurement of Spectra at Different Temperatures -- References -- Textbooks -- Review Articles
Chapter 5 Proton Chemical Shifts and Spin-Spin Coupling Constants as Functions of Structure -- 5.1 Origin of Proton Chemical Shifts -- 5.1.1 Influence of the Electron Density at the Proton -- 5.1.2 Influence of the Electron Density at Neighboring Carbon Atoms -- 5.1.3 The Influence of Induced Magnetic Moments of Neighboring Atoms and Bonds -- 5.1.4 Ring Current Effect in Cyclic Conjugated π-Systems -- 5.1.5 Alternative Methods to Measure Diatropicity -- 5.1.6 Diamagnetic Anisotropy of the Cyclopropane Ring -- 5.1.7 Electric Field Effect of Polar Groups and the van-der-Waals Effect -- 5.1.8 Chemical Shifts through Hydrogen Bonding -- 5.1.9 Chemical Shifts of Protons in Organometallic Compounds -- 5.1.10 Solvent Effects -- 5.1.11 Empirical Substituent Constants -- 5.1.11.1 Tables of Proton Resonances in Organic Molecules -- 5.2 Proton-Proton Spin-Spin Coupling and Chemical Structure -- 5.2.1 The Geminal Coupling Constant (2J) -- 5.2.1.1 Dependence on the Hybridization of the Methylene Carbon -- 5.2.1.2 Effect of Substituents -- 5.2.1.3 A Molecular Orbital Model for the Interpretation of Substituent Effects on 2J -- 5.2.2 The Vicinal Coupling Constant (3J) -- 5.2.2.1 Dependence on the Dihedral Angle -- 5.2.2.2 Dependence upon the C-C Bond Length, Rμν -- 5.2.2.3 Dependence on HCC Valence Angles -- 5.2.2.4 Substituent Effects -- 5.2.3 Long-Range Coupling Constants (4J, 5J) -- 5.2.3.1 Saturated Systems -- 5.2.3.2 Unsaturated Systems -- 5.2.4 Through-Space and Dipolar Coupling -- 5.2.5 Tables of Spin-Spin Coupling Constants in Organic Molecules -- References -- Monograph -- Review Articles -- Chapter 6 The Analysis of High-Resolution Nuclear Magnetic Resonance Spectra -- 6.1 Notation for Spin Systems -- 6.2 Quantum Mechanical Formalism -- 6.2.1 The Schr"odinger Equation -- 6.3 The Hamilton Operator for High-Resolution Nuclear Magnetic Resonance Spectroscopy
6.4 Calculation of Individual Spin Systems -- 6.4.1 Stationary States of a Single Nucleus A -- 6.4.2 Two Nuclei without Spin-Spin Interaction (Jij = 0) -- Selection Rules -- 6.4.3 Two Nuclei with Spin-Spin Interaction (Jij = 0) -- 6.4.3.1 The A2 Case and the Variational Method -- 6.4.3.2 Calculation of the Relative Intensities -- 6.4.3.3 Symmetric and Antisymmetric Wave Functions -- 6.4.4 The AB System -- 6.4.5 The AX System and the First-Order Approximation -- 6.4.6 General Rules for the Treatment of More Complex Spin Systems -- 6.5 Calculation of the Parameters νi and Jij from the Experimental Spectrum -- 6.5.1 Direct Analysis of the AB System -- 6.5.2 Spin Systems with Three Nuclei -- 6.5.2.1 The AB2 (A2B) System -- 6.5.2.2 The Particle Spin -- 6.5.2.3 The ABX System -- 6.5.3 Spin Systems with Four Nuclei - The AA'XX' System -- 6.5.4 Computer Analysis -- References -- Textbooks -- Review Articles -- Chapter 7 The Influence of Molecular Symmetry and Chirality on Proton Magnetic Resonance Spectra -- 7.1 Spectral Types and Structural Isomerism -- 7.2 Influence of Chirality on the NMR Spectrum -- 7.3 Analysis of Degenerate Spin Systems by Means of 13C Satellites and H/D Substitution -- References -- Review Articles -- Part II Advanced Methods and Applications -- Chapter 8 The Physical Basis of the Nuclear Magnetic Resonance Experiment. Part II: Pulse and Fourier-Transform NMR -- 8.1 The NMR Signal by Pulse Excitation -- 8.1.1 Resonance for the Isolated Nucleus -- 8.1.2 Pulse Excitation for a Macroscopic Sample -- 8.2 Relaxation Effects -- 8.2.1 Longitudinal or Spin-Lattice Relaxation -- 8.2.2 Transverse or Spin-Spin Relaxation -- 8.2.3 Experiments for Measuring Relaxation Times -- 8.2.3.1 T1 Measurements - the Inversion Recovery Experiment -- 8.2.3.2 The Spin Echo Experiment -- 8.3 Pulse Fourier-Transform (FT) NMR Spectroscopy
8.3.1 Pulse Excitation of Entire NMR Spectra -- 8.3.2 The Receiver Signal and its Analysis -- 8.4 Experimental Aspects of Pulse Fourier-Transform Spectroscopy -- 8.4.1 The FT NMR Spectrometer - Basic Principles and Operation -- 8.4.1.1 The Computer and the Analog-Digital Converter (ADC) -- 8.4.1.2 RF Sources of an FT NMR Spectrometer -- 8.4.1.3 Transmitter and Signal Phase -- 8.4.1.4 Selective Excitation and Shaped Pulses in FT NMR Spectroscopy -- 8.4.1.5 Pulse Calibration -- 8.4.1.6 Composite Pulses -- 8.4.1.7 Single and Quadrature Detection -- 8.4.1.8 Phase Cycles -- 8.4.2 Complications in FT NMR Spectroscopy -- 8.4.3 Data Improvement -- 8.5 Double Resonance Experiments -- 8.5.1 Homonuclear Double Resonance - Spin Decoupling -- 8.5.2 Heteronuclear Double Resonance -- 8.5.3 Broadband Decoupling -- 8.5.3.1 Broadband Decoupling by CW Modulation -- 8.5.3.2 Broadband Decoupling by Pulse Methods -- 8.5.4 Off-Resonance Decoupling -- References -- Textbooks -- Review articles -- Chapter 9 Two-Dimensional Nuclear Magnetic Resonance Spectroscopy -- 9.1 Principles of Two-Dimensional NMR Spectroscopy -- 9.1.1 Graphical Presentation of Two-Dimensional NMR Spectra -- 9.2 The Spin Echo Experiment in Modern NMR Spectroscopy -- 9.2.1 Time-Dependence of Transverse Magnetization -- 9.2.2 Chemical Shifts and Spin-Spin Coupling Constants and the Spin Echo Experiment -- 9.3 Homonuclear Two-Dimensional Spin Echo Spectroscopy: Separation of the Parameters J and δ for Proton NMR Spectra -- 9.3.1 Applications of Homonuclear 1H J,Î́-Spectroscopy -- 9.3.2 Practical Aspects of 1H J,Î́-Spectroscopy -- 9.4 The COSY Experiment - Two-Dimensional 1H,1H Shift Correlations -- 9.4.1 Some Experimental Aspects of 2D-COSY Spectroscopy -- 9.4.2 Artifacts in COSY Spectra -- 9.4.3 Modifications of the Jeener Pulse Sequence -- 9.4.3.1 COSY-45 -- 9.4.3.2 Long-Range COSY (COSY-LR)
9.4.3.3 COSY with Double Quantum Filter (COSY-DQF) -- 9.5 The Product Operator Formalism -- 9.5.1 Phenomenon of Coherence -- 9.5.2 Operator Basis for an AX System -- 9.5.3 Zero- and Multiple-Quantum Coherences -- 9.5.4 Evolution of Operators -- 9.5.5 The Observables -- 9.5.6 The COSY Experiment within the Product Operator Formalism -- 9.5.7 The COSY Experiment with Double-Quantum Filter (COSY-DQF) -- 9.6 Phase Cycles -- 9.6.1 COSY Experiment -- 9.7 Gradient Enhanced Spectroscopy -- 9.8 Universal Building Blocks for Pulse Sequences -- 9.8.1 Constant Time Experiments: ω1-Decoupled COSY -- 9.8.2 BIRD Pulses -- 9.8.3 Low-Pass Filter -- 9.8.4 z-Filter -- 9.9 Homonuclear Shift Correlation by Double Quantum Selection of AX Systems - the 2D-INADEQUATE Experiment -- 9.10 Single-Scan 2D NMR -- References -- Textbooks and Monographs -- Methods Oriented -- Application Oriented -- Review articles -- Chapter 10 More 1D and 2D NMR Experiments: the Nuclear Overhauser Effect - Polarization Transfer - Spin Lock Experiments - 3D NMR -- 10.1 The Overhauser Effect -- 10.1.1 Original Overhauser Effect -- 10.1.2 Nuclear Overhauser Effect (NOE) -- 10.1.3 One-Dimensional Homonuclear NOE Experiments -- 10.1.3.1 NOE Measurements of Relative Distances between Protons -- 10.1.3.2 NOE Difference Spectroscopy -- 10.1.4 Complications during NOE Measurements -- 10.1.5 Two-Dimensional Homonuclear Overhauser Spectroscopy (NOESY) -- 10.1.6 Two-Dimensional Heteronuclear Overhauser Spectroscopy (HOESY) -- 10.2 Polarization Transfer Experiments -- 10.2.1 SPI Experiment -- 10.2.2 INEPT Pulse Sequence -- 10.3 Rotating Frame Experiments -- 10.3.1 Spin Lock and Hartmann-Hahn Condition -- 10.3.2 Spin Lock Experiments in Solution -- 10.3.2.1 Homonuclear Hartmann-Hahn or TOCSY Experiments -- 10.3.2.2 One-Dimensional Selective TOCSY Spectroscopy -- 10.3.2.3 ROESY Experiment
10.4 Multidimensional NMR Experiments
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Günther, Harald NMR Spectroscopy : Basic Principles, Concepts and Applications in Chemistry Somerset : John Wiley & Sons, Incorporated,c2013 9783527330003
Subject Nuclear magnetic resonance spectroscopy.;Nuclear magnetic resonance spectroscopy -- Industrial applications.;Nuclear magnetic resonance spectroscopy -- Problems, exercises, etc
Electronic books
Alt Author Günther, Harald
Record:   Prev Next