Record:   Prev Next
Author Duer, Melinda J
Title Solid State NMR Spectroscopy : Principles and Applications
Imprint Chichester : John Wiley & Sons, Incorporated, 2001
©2008
book jacket
Edition 1st ed
Descript 1 online resource (582 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Solid-State NMR Spectroscopy Principles and Applications -- Contents -- List of Contributors -- Preface -- Acknowledgements -- Part I The Theory of Solid-State NMR and its Experiments -- 1 The Basics of Solid-State NMR -- 1.1 The vector model of pulsed NMR -- 1.1.1 Nuclei in a static, uniform magnetic field -- 1.1.2 The effect of rf pulses -- 1.2 The quantum mechanical picture: hamiltonians and the Schrödinger equation -- Box 1.1 Quantum mechanics and NMR -- 1.2.1 Nuclei in a static, uniform field -- 1.2.2 The effect of rf pulses -- Box 1.2 Exponential operators, rotation operators and rotations -- 1.3 The density matrix representation and coherences -- 1.3.1 Coherences and populations -- 1.3.2 The density operator at thermal equilibrium -- 1.3.3 Time evolution of the density matrix -- 1.4 Nuclear spin interactions -- 1.4.1 The chemical shift and chemical shift anisotropy -- 1.4.2 Dipole-dipole coupling -- Box 1.3 Basis sets for multispin systems -- 1.4.3 Quadrupolar coupling -- 1.5 Calculating NMR powder patterns -- 1.6 General features of NMR experiments -- 1.6.1 Multidimensional NMR -- 1.6.2 Phase cycling -- 1.6.3 Quadrature detection -- Box 1.4 The NMR spectrometer -- References -- 2 Essential Techniques for Spin-1/2 Nuclei -- 2.1 Introduction -- 2.2 Magic-angle spinning (MAS) -- 2.2.1 Spinning sidebands -- 2.2.2 Rotor or rotational echoes -- 2.2.3 Removing spinning sidebands -- 2.2.4 Magic-angle spinning for homonuclear dipolar couplings -- 2.3 High-power decoupling -- 2.4 Multiple pulse decoupling sequences -- Box 2.1 Average hamiltonian theory and the toggling frame -- 2.5 Cross-polarization -- 2.5.1 Theory -- 2.5.2 Experimental details -- Box 2.2 Cross-polarization and magic-angle spinning -- 2.6 Solid or quadrupole echo pulse sequence -- References -- 3 Dipolar Coupling: Its Measurement and Uses -- 3.1 Introduction
Box 3.1 The dipolar hamiltonian in terms of spherical tensor operators -- 3.2 Techniques for measuring homonuclear dipolar couplings -- 3.2.1 Recoupling pulse sequences -- Box 3.2 Analysis of the DRAMA pulse sequence -- 3.2.2 Double-quantum filtered experiments -- 3.2.3 Rotational resonance -- Box 3.3 Excitation of double-quantum coherence under magic-angle spinning -- 3.3 Techniques for measuring heteronuclear dipolar couplings -- Box 3.4 Analysis of the C7 pulse sequence for exciting double-quantum coherence in dipolar-coupled spin pairs -- 3.3.1 Spin-echo double resonance -- Box 3.5 Theory of rotational resonance -- 3.3.2 Rotational-echo double resonance -- Box 3.6 Analysis of the REDOR experiment -- 3.4 Techniques for dipolar-coupled quadrupolar (spin-1/2) pairs -- 3.4.1 Transfer of population in double resonance -- 3.4.2 Rotational echo, adiabatic passage, double resonance -- 3.5 Techniques for measuring dipolar couplings between quadrupolar nuclei -- 3.6 Correlation experiments -- 3.6.1 Homonuclear correlation experiments for spin-systems -- 3.6.2 Homonuclear correlation experiments for quadrupolar spin systems -- 3.6.3 Heteronuclear correlation experiments for spin-1/2 -- 3.7 Spin-counting experiments -- 3.7.1 The formation of multiple-quantum coherences -- 3.7.2 Implementation of spin-counting experiments -- References -- 4 Quadrupole Coupling: Its Measurement and Uses -- 4.1 Theory -- 4.1.1 The quadrupole hamiltonian -- 4.1.2 The effect of rf pulses -- 4.2 High-resolution NMR experiments for half-integer quadrupolar nuclei -- 4.2.1 Magic-angle spinning -- 4.2.2 Double rotation -- 4.2.3 Dynamic-angle spinning -- 4.2.4 Multiple-quantum magic-angle spinning -- 4.2.5 Recording two-dimensional datasets for DAS and MQMAS -- 4.3 Other techniques for half-integer quadrupolar nuclei -- 4.3.1 Quadrupole nutation -- 4.3.2 Cross-polarization
References -- 5 Shielding and Chemical Shift -- 5.1 The relationship between the shielding tensor and electronic structure -- 5.2 Measuring chemical shift anisotropies -- 5.2.1 Magic-angle spinning with recoupling pulse sequences -- 5.2.2 Variable angle spinning experiments -- 5.2.3 Magic-angle turning -- 5.2.4 Two-dimensional separation of spinning sideband patterns -- References -- Part II Applications of Solid-State NMR -- 6 NMR Techniques for Studying Molecular Motion in Solids -- 6.1 Introduction -- 6.2 Powder lineshape analysis -- 6.2.1 Simulating powder pattern lineshapes -- 6.2.2 Resolving powder patterns -- 6.2.3 Using homonuclear dipolar coupling lineshapes: the WISE experiment -- 6.3 Relaxation time studies -- 6.4 Exchange experiments -- 6.4.1 Achieving pure absorption lineshapes in exchange spectra -- 6.4.2 Interpreting two-dimensional exchange spectra -- 6.5 2H NMR -- 6.5.1 Measuring 2H NMR spectra -- 6.5.2 2H lineshape simulations -- 6.5.3 Relaxation time studies -- 6.5.4 2H exchange experiments -- 6.5.5 Resolving 2H powder patterns -- References -- 7 Molecular Structure Determination: Applications in Biology -- 7.1 Introduction -- 7.1.1 Useful nuclei in biological solid-state NMR -- 7.1.2 An overview of nuclear spin interactions encountered in biological samples -- 7.2 Chemical shifts -- 7.2.1 Is a protein in a disordered or in the native well-structured form -- 7.2.2 Chemical shift anisotropy -- 7.3 Interspin distance measurements -- 7.3.1 Heteronuclear distance measurements: the REDOR experiment -- 7.3.2 Homonuclear distance measurements: rotational resonance -- 7.3.3 Homonuclear distance measurements: DRAWS, RFDR, (fp)-RFDR -- 7.4 Torsion angle measurements -- 7.4.1 Chemical shift-chemical shift tensor correlation experiments -- 7.4.2 Dipolar-chemical shift tensor correlation experiments
7.4.3 Experiments correlating two dipole-dipole coupling tensors -- 7.5 13multiple-quantum NMR spectroscopy -- References -- 8 NMR Studies of Oxide Glass Structure -- 8.1 Introduction -- 8.1.1 The 'structure' of a glass -- 8.1.2 The extent of disorder -- 8.1.3 Liquids vs. glasses -- 8.2 NMR techniques for studying glass structure -- 8.2.1 Static samples -- 8.2.2 Simple MAS spectra -- 8.2.3 Techniques for observing 1H and 19F in glasses -- 8.2.4 Cross-polarization techniques -- 8.2.5 Other double resonance experiments -- 8.2.6 Two-dimensional correlation experiments -- 8.2.7 Techniques that eliminate second-order quadrupolar broadening (DOR, DAS, MQMAS) -- 8.2.8 Spin-lattice relaxation and structure -- 8.3 Applications to specific glass systems -- 8.3.1 Boron-containing oxide glasses -- 8.3.2 Silicate, aluminosilicate and germanate glasses -- 8.3.3 Hydrogen-containing species in oxide glasses -- 8.3.4 Phosphate glasses -- 8.3.5 Thermal history effects -- 8.3.6 Long-range structural anisotropy -- References -- 9 Porous Materials -- 9.1 Introduction -- 9.2 Zeolites -- 9.3 Aluminophosphate molecular sieves -- 9.4 Mesoporous molecular sieves -- 9.5 Spectroscopic considerations -- 9.6 Monitoring the composition of the aluminosilicate framework of zeolites -- 9.7 Ordering of atoms in tetrahedral frameworks -- 9.8 Resolving crystallographically inequivalent tetrahedral sites -- 9.9 Spectral resolution, lineshape and relaxation -- 9.10 Dealumination and realumination of zeolites -- 9.11 NMR studies of Brønsted acid sites -- 9.12 Chemical status of guest organics in the intracrystalline space -- 9.13 In situ studies of catalytic reactions -- 9.14 Direct observation of shape selectivity -- 9.15 Aluminophosphate molecular sieves -- 9.16 Multinuclear studies of sorbed species -- 9.17 129Xe NMR -- 9.18 New NMR techniques for the study of molecular sieves
9.19 Conclusions -- References -- 10 Solid Polymers -- 10.1 Introduction -- 10.2 Structure of polymers -- 10.3 Polymer dynamics -- 10.3.1 NMR methods for studying polymer dynamics -- 10.4 Phase separation of polymers -- 10.5 Oriented polymers -- 10.6 Fluoropolymers -- References -- 11 Liquid-Crystalline Materials -- 11.1 The liquid-crystalline state -- 11.2 Orientational order -- 11.2.1 Phase symmetry -- 11.2.2 Molecular orientational order -- 11.3 The general, time-independent NMR hamiltonian for liquid-crystalline samples -- 11.4 Molecular order parameters -- 11.4.1 Different representations of the order parameters -- 11.4.2 Molecular order parameters and the symmetry of rigid molecules -- 11.5 Director alignment -- 11.6 Dipolar couplings between nuclei in rigid molecules in liquid-crystalline phases -- 11.6.1 Geometry of rigid molecules from dipolar couplings -- 11.7 Deuterium quadrupolar splittings for rigid molecules in liquid-crystalline phases -- 11.7.1 Signs of quadrupolar splittings -- 11.8 Chemical shift anisotropy for rigid molecules in liquid crystalline phases -- 11.9 Electron-mediated spin-spin coupling in liquid-crystalline samples -- 11.9.1 The determination of the structure, orientational order and conformations of flexible molecules in liquid-crystalline samples -- 11.9.2 Molecular orientational order for flexible molecules -- 11.9.3 Conformationally dependent order parameters -- 11.10 Determination of the conformationally dependent orientational order parameters and the conformational distributions of molecules in liquid-crystalline phases from NMR parameters -- 11.10.1 Theoretical models for PLC(bmd, gmd, (jl)) -- 11.11 NMR experiments for liquid-crystalline samples -- 11.11.1 Simplification of proton spectra by partial deuteriation plus deuterium decoupling -- 11.11.2 Multiple-quantum spectra
11.11.3 Symmetry selection by multiple-quantum filtering
Melinda Duer is a Lecturer in the Department of Chemistry, University of Cambridge and has worked in the field of solid-state NMR spectroscopy for more than ten years
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Duer, Melinda J. Solid State NMR Spectroscopy : Principles and Applications Chichester : John Wiley & Sons, Incorporated,c2001 9780632053513
Subject Nuclear magnetic resonance spectroscopy.;Solid state chemistry
Electronic books
Record:   Prev Next