Record:   Prev Next
Author Nelson, Wesley G
Title Piezoelectric Materials : Structure, Properties and Applications
Imprint Hauppauge : Nova Science Publishers, Incorporated, 2010
©2010
book jacket
Descript 1 online resource (273 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Materials Science and Technologies
Materials Science and Technologies
Note Intro -- PIEZOELECTRIC MATERIALS: STRUCTURE, PROPERTIES AND APPLICATIONS -- PIEZOELECTRIC MATERIALS: STRUCTURE, PROPERTIES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 PIEZOELECTRIC CERAMICS MATERIALS: PROCESSING, PROPERTIES, CHARACTERIZATION, AND APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. HISTORY AND PROCESSING OF PIEZOELECTRIC CERAMIC MATERIALS -- 2.1. History of Piezoelectricity -- 2.2. Processing of Piezoelectric Ceramic Materials -- 3. PROPERTIES OF PIEZOELECTRIC CERAMIC MATERIALS -- 3.1. Piezoelectric Parameters -- 3.2. Compositions and Properties -- 3.3. Piezoelectric Constitutive Relationships -- 4. CHARACTERIZATION METHODS FOR PIEZOELECTRIC CERAMIC MATERIALS -- 4.1. Characterization of Piezoelectric Properties -- 4.1.1. Resonant method and equivalent circuit -- 4.1.2. Direct methods for measuring piezoelectric parameters -- 4.2. Characterization of Ferroelectric Domain Structure -- 5. APPLICATIONS OF PIEZOELECTRIC CERAMIC MATERIALS -- 5.1. Piezoelectric Actuators -- 5.2. Ultrasonic Motor -- 5.3. Piezoelectric Ceramic-Based Sensors -- 5.4. Ultrasonic Transducer -- 5.5. Active Vibration Damping -- 6. FUTURE OUTLOOK OF PIEZOELECTRIC CERAMIC MATERIALS -- 7. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 2 STRESS ENGINEERED PIEZOELECTRIC COMPOSITES -- ABSTRACT -- I. OVERVIEW AND HISTORY -- II. TYPES OF STRESS-BIASED DEVICES AND FABRICATION -- (a) Rainbow -- (b) Thunder -- (c) Cerambow -- (d) Crescent -- (e) LIPCA -- (f) Presto -- (g) Stress-biased Cymbals -- III. PERFORMANCE ANALYSIS -- (a) General considerations -- (b) The role of stress on intrinsic and extrinsic contributions to piezoelectric response, dielectric, and mechanical response -- (c) Domain wall contributions to performance -- (d) Other contributions to performance and performance attributes
(e) Investigation and modeling of stress profile as a function of device geometry -- (f) Limitations in modeling associated with linear mechanical and piezoelectric behavior -- (g) Device reliability and lifetime -- IV. APPLICATIONS -- V. FUTURE DIRECTIONS -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 3 PIEZOELECTRIC MATERIALS: STRUCTURE, PROPERTIES AND APPLICATIONS -- ABSTRACT -- I. TREND OF CERAMIC ACTUATOR -- 1. Trend of Ceramic Actuator -- 2. An Overview of Solid-State Actuator and High Strain Piezoelectric Actuator Structure -- II. NEW TYPE ACTUATOR FABRICATED BY POWDER INJECTION MOLDING -- 1. New Type Piezoelectric Transformer: Manufacturing Process, Structure and Properties of Dome Shaped Piezo-Tansformer -- 1.1 Introduction -- 1.2 Manufacturing process -- 1.3 Characteristic the effects of geometrical factors on the step-up ratio in piezoelectric transformer -- 1) Modeling -- 2) Properties of Dome Shaped Piezoelectric Transformer -- (1) Microstructure -- (2) Displacement Characteristics -- (3) Step- Up Ratio and High Power Characteristics -- 3) Application -- High Power Piezoelectric Transformer -- 4) Conclusion -- 2. Compact Size Ultrasonic Linear Motor Using a Dome Shaped Piezoelectric Actuator -- 2.1 Introduction -- 2.2 Structure and properties of DSPLM -- 1) Modeling -- 2) Experimental Analysis of DSPLM -- 3) Operation Principle of a Dome-Shaped Piezoelectric Linear Motor -- 2.3 Application: a newly designed chopper for pyroelectric infrared sensor by using a dome-shaped piezoelectric linear motor (DSPLM) -- 1) Structure of Chopper Combined with DSPLM -- 2) The Effect of Chopping Periods On the Output Signal of a PIR Sensor -- 3) Operational Characteristics of Modulated PIR Sensor -- 2.4. CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 4 REVIEW OF INTEGRATED PIEZOCERAMIC TRANSDUCERS IN SMART MATERIALS AND STRUCTURES -- ABSTRACT
INTRODUCTION -- Integration Design Aspects -- Testing and Key Results -- Modelling Approaches -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 5 PIEZO AND PYROELECTRIC COMPOSITE FILM FOR ACOUSTIC EMISSION AND X-RAY RADIATION INTENSITY DETECTION -- ABSTRACT -- INTRODUCTION -- AE Sensors -- X-Ray Intensity Detector -- Experimental -- Polymer matrix -- Ferroelectric ceramic -- Composite preparation -- Surface mounted sensors -- Radiation detection system -- Results and Discussion -- CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 6 PIEZOELECTRIC FLOATING MASS TRANSDUCER FOR IMPLANTABLE MIDDLE EAR HEARING DEVICES -- ABSTRACT -- INTRODUCTION -- DESIGN AND IMPLEMENTATION OF PFMT -- Structure of PFMT -- Design Considerations -- Dimensions of Transducer -- Force of Transducer -- Time and Frequency Characteristics -- Power Consumption -- Biocompatibility and Reliability -- Implementation of PFMT -- Experiments and Results -- Measurement of Piezoelectric Actuator Vibration Displacement -- Experiment Using Simple Vibration Model -- Nonlinear Distortion and Transient Response -- In Vitro Experiment -- Power Consumption -- DISCUSSION -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7 THERMALLY INDUCED CRACKING OF PIEZOELECTRIC MATERIALS -- 7.1 INTRODUCTION -- 7.2. PENNY-SHAPED CRACK SUBJECTED TO PRESCRIBED TEMPERATURE -- 7.2.1. The Temperature Field -- 7.2.2. Electro-Elasticity Field -- 7.2.3. Integral Equations and Crack Tip Field Intensity Factors -- (A) Impermeable crack solution -- (B) Permeable crack solution -- (C) A notch of finite thickness -- 7.2.4. Applying to Isotropic Materials and Dielectrics -- (A) Isotropic materials -- (B) Dielectrics -- 7.3 PENNY-SHAPED CRACK SUBJECTED TO PRESCRIBED THERMAL FLUX -- 7.3.1. Crack Surfaces Subjected to Known Thermal Fluxes (Figure 7.2(A)) -- (A) Isotropic materials -- (B) Dielectrics
7.3.2. A Constant Thermal Flux on the Crack Faces ((Figure 7.2(B)) -- (1) The temperature field -- (2). Electro-elasticity field -- (3) The stress intensity factor -- 7.4. DESIGN OF A SMART FUNCTIONALLY GRADED THERMOPIEZOELECTRIC COMPOSITE STRUCTURE -- 7.4.1. Finite Element Formulation of Thermal Equation -- 7.4.2. Finite Element Formulation of Piezoelectric Equation -- 7.4.3. Modal and Material Properties -- 7.4.4. Active Thermal Deformation Control for Model 1 -- Stress distribution for model 1 -- Stress distribution for smart FGM -- REFERENCES -- APPENDIX A -- APPENDIX B -- Chapter 8 TRANSIENT THERMAL FRACTURE OF PIEZOELECTRIC MATERIALS STRUCTURES -- 8.1 INTRODUCTION -- 8.2 STRENGTH EVALUATION OF PIEZOELECTRIC CERAMICS UNDER TRANSIENT THERMAL ENVIRONMENTS -- 8.2.1 Temperature Distribution -- 8.2.2 Thermal Stresses and Electric Displacements of the Un-Cracked Medium -- 8.2.3. The Crack Problem -- (1) The singular integral equation -- (2) Stress and electric displacement intensity factors -- 8.2.4. Cracking due to Thermal Shock -- (1) A double-edge cracked plate under cold shocking -- (2) A center-cracked plate under hot shock -- 8.2.5. Thermal Shock resistance -- 8.3. POLING PERPENDICULAR TO THE STRIP SURFACES -- 8.3.1. Temperature Distribution -- 8.3.2. TRANSIENT THERMAL STRESS IN THE PIEZOELECTRIC CERAMIC PLATE -- 8.3.3. Cracking due to Thermal Shock -- (1) A single-edge cracked plate under cold shock -- (2) A center crack under hot shock -- 8.3.4 Thermal Shock Resistance -- 8.4. TRANSIENT THERMAL FRACTURE OF A SEMI-INFINITE PIEZOELECTRIC MEDIUM WITH A CONDUCTIVE SURFACE CRACK -- 8.4.1. Temperature Distribution -- 8.4.2. Thermal Stresses and Electric Fields in the un-Cracked Medium -- 8.4.3. The Crack Problem -- (A) The singular integral equation -- (B) Crack tip field intensity factors -- 8.4.4. Numerical Results
(A) Thermal stresses and electric fields -- (B) Thermal stress and electric field intensity factors -- (C) Thermal crack growth analysis -- (D) Thermal shock resistance curve -- 8.5. FRACTURE OF A PIEZOELECTRIC CYLINDER UNDER A TRANSIENT TEMPERATURE FIELD -- 8.5.1. The Temperature Field -- 8.5.2. Electro-Elasticity Fields in the un-Cracked Piezoelectric Medium -- 8.5.3. Cracking of the Piezoelectric Cylinder Under Transient Heating on its Outer Surface -- 8.5.4. A Crack Embedded in an Infinite Piezoelectric Medium -- Impermeable crack -- Permeable crack -- Time-dependent solutions -- 8.5.5. A Numerical Example -- (A) Stress intensity factors -- (B) Electric displacement intensity factors for an electrically impermeable crack -- (C) Electric displacement intensity factors for an electrically permeable crack -- (D) Thermal shock resistance of the piezoelectric cylinder -- Thermal shock fracture behavior of piezoelectric materials has been investigated theoretically for a piezoelectric plate containing an embedded crack or an edge crack. -- The thermal shock fracture of a semi-infinite piezoelectric medium was studied. -- Thermally induced stress and fracture behavior of piezoelectric ceramics have been investigated theoretically for a piezoelectric cylinder -- REFERENCES -- APPENDIX A -- APPENDIX B: MODEL VERIFICATION -- INDEX -- Blank Page
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Nelson, Wesley G. Piezoelectric Materials: Structure, Properties and Applications Hauppauge : Nova Science Publishers, Incorporated,c2010 9781608762729
Subject Piezoelectric devices -- Materials.;Piezoelectric materials
Electronic books
Record:   Prev Next