Record:   Prev Next
Author Konstantatos, Gerasimos
Title Colloidal Quantum Dot Optoelectronics and Photovoltaics
Imprint New York : Cambridge University Press, 2013
©2013
book jacket
Descript 1 online resource (330 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Coverpage -- Half title -- Title -- Copyright -- Contents -- Contributors -- Preface -- 1 Engineering colloidal quantum dots -- 1.1 Colloidal synthesis of inorganic nanocrystals and quantum dots -- 1.1.1 Introductory remarks: history and terminology -- 1.1.2 Basics of the surfactant-assisted colloidal synthesis of NC quantum dots -- 1.2 Long-range ordered NC solids -- 1.2.1 Single-component NC superlattices -- 1.2.2 Multicomponent NC superlattices -- Binary NC superlattices (BNSLs) -- Ternary and quasi-ternary NC superlattices (TNSLs and quasi-TNSLs) -- Quasicrystalline BNSLs -- 1.2.3 Shape-directed self-assembly of NCs -- 1.3 Surface chemistry- a gateway to applications of NCs -- 1.3.1 Organic capping ligands -- Initial capping molecules (surfactants, stabilizers) -- Ligand-exchange with smaller capping molecules and with cross-linking molecules -- Cross-linking surface ligands -- 1.3.2 Complete removal of organic ligands and inorganic surface functionalization -- Inorganic capping ligands -- Ligand-free NC surfaces -- 2 Aqueous based colloidal quantum dots for optoelectronics -- 2.1 Introduction -- 2.2 Aqueous colloidal synthesis of semiconductor NCs -- 2.2.1 ZnX NCs -- 2.2.2 Alloyed ZnSe based NCs -- 2.2.3 CdX NCs -- 2.2.4 Core/shell CdTe based NCs -- 2.2.5 Alloyed CdTe based NCs -- 2.2.6 CdSe, CdSe/CdS NCs -- 2.2.7 HgX and PbX NCs -- 2.2.7.1 HgX NCs -- 2.2.7.2 PbX NCs -- 2.3 Assemblies and functional architectures of NCs -- 2.3.1 LbL assembly technique -- 2.3.2 Assembly of NCs on micro- and nano-beads -- 2.3.3 Covalent coupling of NCs -- 2.3.4 Controllable aggregation -- 2.3.5 Nanowires and nanosheets -- 2.3.6 Nanocrystal based gels and aerogels -- 2.4 Conclusions and outlook -- 3 Electronic structure and optical transitions in colloidal semiconductor nanocrystals -- 3.1 Introduction -- 3.2 Foundational concepts -- 3.3 A simple model
3.4 Experimental evidence for quantum confinement -- 3.5 Engineered quantum dot structures -- 3.6 Advanced theoretical treatments -- 3.7 Atomistic approaches -- 3.8 Current challenges and future outlook -- 4 Charge and energy transfer in polymer/nanocrystal blends -- 4.1 Introduction -- 4.2 A brief history of QD/polymer optoelectronics -- 4.2.1 Quantum dot light emitting diodes (QD-LEDs)- size-tunable emission across the spectrum -- 4.2.2 Quantum dot photovoltaics (QD-PV) and photodetectors- converting photons to electrons -- 4.2.2.1 QD-PVs -- 4.2.2.2 Quantum dot photodetectors -- 4.3 The QD-organic interface- ligands and more -- 4.3.1 Ligands -- 4.3.2 Energetics -- 4.3.2.1 Charge transfer and Förster resonance energy transfer (FRET) in QD-LEDs -- 4.3.2.2 Type II heterojunctions and charge transfer in QD-PVs -- 4.4 Conclusion and future outlook -- 5 Multiple exciton generation in semiconductor quantum dots and electronically coupled quantum dot arrays for application to third-generation photovoltaic solar cells -- 5.1 Introduction -- 5.2 Relaxation dynamics of photogenerated electron-hole pairs in QDs -- 5.2.1 Transient absorption spectroscopy (TA) -- 5.3 Multiple exciton generation (MEG) -- 5.3.1 MEG in QDs -- 5.3.2 MEG controversy and role of photocharging -- 5.3.3 MEG efficiency and comparison to impact ionization in bulk semiconductors -- 5.4 QD solar cells -- Arrays of quantum dots -- Quantum dot-sensitized nanocrystalline TiO2 solar cells -- Quantum dots dispersed in organic semiconductor polymer matrices. -- 5.4.1 MEG photocurrent and determination of the internal quantum efficiency (IQE) in QD solar cells -- 5.5 QD arrays -- 5.5.1 MEG in PbSe QD arrays -- 5.6 Conclusions -- 6 Colloidal quantum dot light emitting devices -- 6.1 Introduction -- 6.2 Why QDs for LEDs? -- 6.2.1 Saturated colors -- 6.2.2 Solution processable -- 6.2.3 Stability
6.3 QD and device physics influencing LED performance -- 6.3.1 Quantifying the luminescence efficiency -- 6.3.2 QD surface states -- 6.3.3 QD charging -- 6.3.4 Charge transport in QD films -- 6.3.5 Field driven luminescence quenching -- 6.3.6 Isolating the effects of charge and field -- 6.4 Characterizing QD-LEDs -- 6.5 QD-LEDs based on optical downconversion -- 6.6 QD-LEDs based on organic charge transport layers -- 6.6.1 Deposition of QDs: spin casting, phase separation, and microcontact printing -- 6.6.2 Operation of colloidal QD-LEDs -- 6.7 QD-LEDs with inorganic charge transport layers -- 6.7.1 Reasons for inorganic charge transport layers -- 6.7.2 Fabrication of all inorganic QD-LEDs -- 6.7.3 Operation of QD-LED with inorganic charge transport layers -- 6.7.4 Improving the efficiency of QD-LEDs with inorganic charge transport layers -- 6.8 Future work -- 7 Colloidal quantum dot photodetectors -- 7.1 Introduction -- 7.1.1 Applications of top-surface photodetectors -- 7.1.2 Colloidal quantum dots (CQDs) for light detection -- 7.2 Fundamentals of photodetectors -- 7.2.1 Types of photodetectors -- 7.2.2 Figures of merit -- 7.3 Prior art in solution-processed photodetectors -- 7.4 Solution-processed QD photoconductors -- 7.4.1 Photoconductive gain and noise in PbS QD photodetectors -- 7.4.2 Visible-wavelength and multispectral photodetection -- 7.4.3 Control of temporal response in photoconductive detectors via trap state engineering -- 7.5 CQD based phototransistors -- 7.6 CQD photodiodes -- 7.7 Conclusions- summary -- 8 Optical gain and lasing in colloidal quantum dots -- 8.1 Introduction -- 8.2 Optical properties of colloidal nanocrystal quantum dots -- 8.3 Carrier dynamics in colloidal quantum dots -- 8.3.1 Auger recombination -- 8.3.2 Poisson statistics and state filling -- 8.4 Gain in solid state nanocrystal quantum dot films
8.4.1 Amplified spontaneous emission (ASE) -- 8.4.2 Variable strip length (VSL) for optical gain measurements -- 8.4.3 Experimental techniques for waveguide loss measurement in colloidal quantum dot films -- 8.4.4 Modal gain in visible colloidal quantum dots based on cadmium chalcogenides -- 8.4.5 Modal gain in infrared colloidal quantum dots based on lead chalcogenides -- 8.5 Spectral and temporal characteristics of optical gain in nanocrystal quantum dots -- 8.5.1 Visible colloidal quantum dots based on cadmium chalcogenides -- 8.5.2 Infrared colloidal quantum dots based on lead chalcogenides -- 8.6 Colloidal nanocrystal lasers -- 8.6.1 Microcapillary resonators -- 8.6.2 Microsphere resonators -- 8.6.3 Distributed feedback resonators -- 8.6.4 Microtoroid resonators -- 8.6.5 Other resonators -- 8.7 Future prospects -- 8.7.1 Single exciton gain -- 9 Heterojunction solar cells based on colloidal quantum dots -- 9.1 Introduction -- 9.2 Chemistry of CQDs for solar cells -- 9.3 Physics of CQDs for solar cells -- 9.3.1 Electronic structure evolution in low dimensional systems -- 9.3.2 Fundamentals of light-matter interactions in QDs -- 9.3.3 Selection rules and the complications of H -- 9.4 Optical and electronic properties of CQD films for solar cells -- 9.5 Device physics and design of CQD heterojunction solar cells -- 9.6 Technology and scientific outlook -- 10 Solution-processed infrared quantum dot solar cells -- 10.1 Introduction -- 10.2 Infrared CQDs for the full absorption of solar spectrum -- 10.2.1 Bandgap engineering for the broadband solar spectrum match -- 10.2.2 Light absorption in CQD film -- 10.3 Semiconductor solar cell fundamentals -- 10.3.1 Fundamentals of p-n junction -- 10.3.2 Fundamentals of solar cells -- 10.3.3 Implications for CQD solar cell optimization -- 10.4 Electrical properties of CQD films
10.4.1 Measurements of electrical properties of CQD films -- 10.4.2 Transport in CQD film -- 10.4.3 CQD passivation -- 10.4.4 CQD film doping -- 10.4.5 Dielectric constant of CQD film -- 10.5 Progress in CQD solar cell performance -- 10.5.1 Schottky solar cells -- 10.5.2 Heterojunction solar cells -- 10.6 Device stability -- 10.7 Perspectives and conclusions -- 11 Semiconductor quantum dot sensitized TiO2 mesoporous solar cells -- 11.1 Introduction -- 11.2 Mesoscopic PbS quantum dot/TiO2 heterojunction solar cells -- (i) The number of QD layers -- (ii) The size of the QDs -- (iii) Ga3+ and Y3+ cationic substitution in TiO2 photoanode -- (iv) The QDs' linker -- 11.2.1 Solid-state PbS/TiO2 heterojunction solar cell -- 11.3 QD/TiO2 mesoporous solar cell using the SILAR process -- Assembly of QD-sensitized cells -- 11.4 Cobalt complex-based redox couples in CQD-TiO2 mesoporous solar cells -- Index
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Konstantatos, Gerasimos Colloidal Quantum Dot Optoelectronics and Photovoltaics New York : Cambridge University Press,c2013 9780521198264
Subject Quantum electronics.;Quantum dots.;Photovoltaic cells
Electronic books
Alt Author Sargent, Edward H
Record:   Prev Next